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Goal 
Variational Auto-Encoders typically make use of latent variables with the assumption 
that they are independent of each other. ​Ignoring the dependencies between latent 
variables limits the flexibility of these models, negatively impacting the model’s ability 
to fit the data. ​Leveraging the dependency structure would help the model to better 
learn the distribution of the latent variables and perform better on the underlying 
generation task. It would also help us interpret their effect and inter-relationship in a 
much better manner. 
 
“Variational Autoencoders with Jointly Optimized Latent Dependency Structure” is a 
recent paper that appeared in ICLR 2019, which assumes a Bayesian Network as the 
dependency structure between the bottleneck latent variables of the VAE. They propose 
a model architecture that has the ability to jointly learn the dependency structure in the 
form of a Bayesian Network along with learning the parameters for the encoder and the 
decoder. In doing so, the proposed architecture combines the strength of deep 
generative models and probabilistic graphical models. 
 
Our goals with the project are as follows: 
 

1. Implementation:​ Since the code for the aforementioned paper has not been 
made available, we wrote our own implementation in Python. 

2. Dependency Structure using LSTMs:​ The paper proposes a top down 
architecture to model the dependency structure for each latent variable to its 
parent latent variables. We experiment by replacing these top down inference 
modules by a LSTM network to model the dependency between latent variables. 

3. Extension to Sequential Data:​ We propose an RNN extension of the idea to 
deal with sequential data using a VAE. We also propose the corresponding 
ELBO for optimization. 

 
 
 
 



Related Literature 

 
1. VAE 

Variational autoencoders (VAEs) are a deep learning technique for learning 
latent representations. The traditional VAE, as we know it, came around in 2014 
with the Auto Encoding Variational Bayes (AEVB) algorithm. Variational 
autoencoders are powerful generative models for unsupervised learning.  
 
AEVB is based on ideas from variational inference. In variational inference, the 
objective is to maximize the evidence lower bound (ELBO) 

 
over the space of all q​ϕ​. The ELBO satisfies the equation 

 
Since x is fixed, ​q(z∣x)​ is defined to be conditioned on x. This means that for 
every ​x​, a different ​q(z)​ is chosen, which will produce a better posterior 
approximation than always choosing the same ​q(z)​. Optimizing our objective 
requires a good estimate of the gradient. The main technical contribution of the 
VAE paper is a low-variance gradient estimator based on the reparameterization 
trick. Gaussian variables provide the simplest example of the reparameterization 
trick. Instead of writing 

 
we may write 



 
where ϵ ∼ N(0,1) 
It is easy to check that the two ways of expressing the random variable ​z​ lead to 
the same distribution. The biggest advantage of this approach is that we many 
now write the gradient of an expectation with respect to ​q(z)​ (for any f) as - 

 
The gradient is now inside the expectation and we may use MCMC sampling to 
get an estimate of the right-hand term. ​Even though this approach works well, 
it suffers from the limitation that it treats latent variables as independent. 

 
Paper: ​https://arxiv.org/abs/1312.6114 
Implementation: ​https://github.com/pytorch/examples/tree/master/vae 
Key points: Treats latent variables independently 

 
2. Ladder VAE 

 
This paper proposes a new inference model, the Ladder Variational 
Autoencoder, that recursively corrects the generative distribution by a data 
dependent approximate likelihood in a process resembling the ​Ladder Network​. 
First, a deterministic upward pass computes the Gaussian likelihood like 
contributions: 

 

 

https://arxiv.org/abs/1312.6114
https://github.com/pytorch/examples/tree/master/vae


 

 
This is followed by a stochastic downward pass recursively computing both the 
approximate posterior and generative distributions. 

 
Paper: ​https://papers.nips.cc/paper/6275-ladder-variational-autoencoders.pdf 
Implementation: ​https://github.com/geosada/LVAE 
Key points: Assumes chain dependency structure for latent variables. 
 

3. FC VAE 
Paper: ​https://arxiv.org/pdf/1606.04934.pdf 
Implementation: ​https://github.com/openai/iaf 
Key points: posterior is iteratively refined, models a fully connected graph over 
latent variables  

 
Approach 
We propose two ​main modifications ​(apart from implementing the paper itself) to the 
method already described in the paper (for details regarding other experiments, see the 
Experimental results ​section) -  
 
(i) Replacing top-down inference module with an LSTM network 
We try to model the dependency structure in the top-down structure. The set of parent 
candidates for Z​i ​is the entire set Z​N​, Z​N-1​ … Z​i+1​ and we try to model this in our top-down 
network. After discussing with the TA, we thought this was similar to using an LSTM 
instead of the top down network, in which the hidden state from Z​i+1 ​would provide 
context from all  Z​N​, Z​N-1​ … Z​i+1 ​to Z​i​ . Our intuition turned out to be right, and replacing 
the top-down version with LSTM actually gave us slightly better results. The only 
drawback was the lack in interpretability, since we don’t get an explicit graph structure in 
this case. 

https://papers.nips.cc/paper/6275-ladder-variational-autoencoders.pdf
https://github.com/geosada/LVAE
https://arxiv.org/pdf/1606.04934.pdf
https://github.com/openai/iaf


 
 
(ii) Extending GraphVAE for sequential data 
We propose a simple extension of the method described in the paper for handling 
sequential data. We allow the parent set of Z​i​t​ to be the union of {Z​N​

t​, Z​N-1​
t​ … Z​i+1​

t​} as 
well as {Z​N​

t-1​, Z​N-1​
t-1​ … Z​1​t-1​} i.e. latent variables of both timesteps ​t ​and ​t-1​. We further 

make the Markov assumption, which forces the dependency structure between Z​i​’s to 
remain fixed across all timesteps. This further enables the approximate posterior to be 
decomposed into a product of conditional distributions of the latent variables over all 
timesteps, thereby allowing the formulation of a new ELBO term -  
 

 
 
Here Z​Pa(n)​ includes latent variables of both timesteps ​t ​and ​t-1​. The following diagram 
gives an overview of our proposition: 
 



 
 
Implementation details 
We’ve used PyTorch to code up the architecture.  There are roughly about a total of 
3000 lines of code in the repository. There are 3 main branches, ​master ​(for 
GraphVAE), ​LSTM ​(for GraphLSTMVAE) and ​vrnn ​(for RecurrentGraphVAE). You can 
find the code ​here​. We coded up the entire architecture ourselves, using the ​PyTorch 
template​ as our starting point. 
 
Platform 
We ran our experiments on Nvidia 1080 Tis.  
The timing studies are as follows. For GraphVAEs one epoch takes about 2s, and we 
ran it for about 1200 epochs. 
For the LSTM variant, one epoch takes around 6s, and we ran it for about 1000 epochs 
For our RecurrentGraphVAE, one epoch took about 1500s per epoch. 
 
Experimental results 

https://github.com/ys1998/vae-latent-structure
https://github.com/victoresque/pytorch-template
https://github.com/victoresque/pytorch-template


Datasets: ​Preliminary checks were performed on the standard MNIST dataset. Original 
GraphVAE model was evaluated on the binarized MNIST dataset, where each pixel 
value was first normalized to [0,1] range followed by discretization to a binary value by 
thresholding at 0.5. Each pixel was then modelled by a bernoulli random variable whose 
parameter μ was predicted by the VAE. The recurrent variant of GraphVAE model was 
evaluated on the preprocessed IAM Online Handwriting dataset. It consists of 
sequences of the 3-tuple ​(x, y, e)​ where ​(x, y)​ denote coordinates of the pen along the 
curve and ​e ​denotes whether it touches the surface or not. We modelled ​(x, y)​ using a 
bivariate gaussian with diagonal covariance matrix, and ​e ​using a bernoulli distribution. 
 
We perform experiments for the following three tasks. Results obtained in each task are 
also provided. 
 
(i) Ensuring that there indeed is some correlation amongst latent variables 
One of the preliminary investigations we did was to deduce the correlation between the 
latent variables of a standard VAE. For each training sample we plotted the parameters 
of each latent variable against those of another. If latent variables were independent of 
one another, we should get a uniformly scattered plot. However, the plots (as well as 
the correlation matrix) we got clearly indicated that there was some correlation amongst 
latent variables. This served as a green flag for going ahead and actually finding the 
dependency structure amongst latent variables for this dataset. 
 
The image on the left is the correlation matrix between the predicted parameters of the 
distributions of latent variables. Had there been no correlation, this matrix would be the 
identity matrix. Non-zero values at non-diagonal positions indicate some correlation 
between latent variables (note that only the leading and trailing 4x4 submatrices are 
meaningful). Following pictures indicate the presence of some dependency structure in 
the distributions of latent variables. 
 

 
 
 



 
 
(ii) Latent dependency structure for binarized MNIST dataset 
This task involved implementing the GraphVAE model described in the paper, and using 
it to learn the structure of a bayesian network over the latent variables. Due to 
computational and time constraints, we had to make several simplifying assumptions; 
the authors used 5 hidden variables with 16 dimensions per variable, while we used 
single-dimensional 5 hidden variables. After 1000 epochs of training, only 5 out of the 
10 gates had converged to 0/1 - the remaining gating parameters had either saturated 
to an intermediate value, or were changing very slowly. The plot below shows the 
variation of μ​i,j​ parameters for gates that converged (gate i-j is for the edge directed from 
z​j​ to z​i​). 



 
The orange plots below show the variation in μ​i,j ​values for all gates till 1000 epochs. We 
observed that after this, other gate values were changing quite slowly. In order to boost 
the process, we freezed the values of already converged gates to 0/1 accordingly and 
resumed training the model. The blue curve in the plot below depicts this change.  



 
 
(iii) Replacing the top-down inference module with an LSTM network 
The top-down sampling process could be replaced by an LSTM network without 
changing the semantics. The original GraphVAE used separate top-down inference 
modules for each z​i​, while the LSTM variant (we call it GraphLSTMVAE in our 
experiments) shares those parameters for all z​i​. Thus, if one isn’t concerned about 
explicitly finding the dependency structure (since this information is lost within the 
recurrent connections of the LSTM), GraphLSTMVAE provides a less expensive 
method to accomplish the same goal. Our experiments support this hypothesis, and 
indeed show that GraphLSTMVAE performs better than GraphVAE when trained for the 
same number of epochs (red - GraphLSTMVAE, orange - GraphVAE) 
 



 
 
 
 



(iv) Extending GraphVAE for sequential data 
We implemented RecurrentGraphVAE as described earlier, but due to computational 
constraints were unable to train the model on IAM online handwriting dataset quite well. 
The drastic increase in time per epoch was attributed to two nested for loops, one over 
timesteps and the other over a topological ordering of latent variables for each timestep. 
We include partially obtained results below for completeness. 
 
Gating parameters for recurrent connections 
 

 
 



Gating parameters for self connections 
 

 
 
Generation 
We tried using the decoder to generate some images by sampling from a unit 
multivariate Gaussian and passing it through the decoder. Here are some of the sample 
images that we got (5 and 4) - 

 
Here are some of the sample images that were generated during training/reconstruction 
(1 and 1) - 

 



Effort 
 
Time Distribution:  
Literature Survey: 20% 
Coding: 40% 
Experiments: 30% 
Documentation: 10% 
 
Most Challenging Part: 
Resolving NaN mysteries 
PyTorch variable freezing 
 
Work Distribution: 
Paper implementation (GraphVAE) and RecurrentGraphVAE - Yash 
GraphLSTMVAE - Bhavesh and Nihal 
Preliminary investigations - Lalit 
Documentation - Yash, Bhavesh and Nihal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


