
“Discovering Latent Dependency Structure in VAEs”
CS726 Final Project Report

Team BLYN
Bhavesh (150100007), Lalit (150070036), Yash (160050002), Nihal (150040015)

Goal
Variational Auto-Encoders typically make use of latent variables with the assumption
that they are independent of each other. Ignoring the dependencies between latent
variables limits the flexibility of these models, negatively impacting the model’s ability
to fit the data. Leveraging the dependency structure would help the model to better
learn the distribution of the latent variables and perform better on the underlying
generation task. It would also help us interpret their effect and inter-relationship in a
much better manner.

“Variational Autoencoders with Jointly Optimized Latent Dependency Structure” is a
recent paper that appeared in ICLR 2019, which assumes a Bayesian Network as the
dependency structure between the bottleneck latent variables of the VAE. They propose
a model architecture that has the ability to jointly learn the dependency structure in the
form of a Bayesian Network along with learning the parameters for the encoder and the
decoder. In doing so, the proposed architecture combines the strength of deep
generative models and probabilistic graphical models.

Our goals with the project are as follows:

1. Implementation: Since the code for the aforementioned paper has not been
made available, we wrote our own implementation in Python.

2. Dependency Structure using LSTMs: The paper proposes a top down
architecture to model the dependency structure for each latent variable to its
parent latent variables. We experiment by replacing these top down inference
modules by a LSTM network to model the dependency between latent variables.

3. Extension to Sequential Data: We propose an RNN extension of the idea to
deal with sequential data using a VAE. We also propose the corresponding
ELBO for optimization.

Related Literature

1. VAE

Variational autoencoders (VAEs) are a deep learning technique for learning
latent representations. The traditional VAE, as we know it, came around in 2014
with the Auto Encoding Variational Bayes (AEVB) algorithm. Variational
autoencoders are powerful generative models for unsupervised learning.

AEVB is based on ideas from variational inference. In variational inference, the
objective is to maximize the evidence lower bound (ELBO)

over the space of all qϕ. The ELBO satisfies the equation

Since x is fixed, q(z∣x) is defined to be conditioned on x. This means that for
every x, a different q(z) is chosen, which will produce a better posterior
approximation than always choosing the same q(z). Optimizing our objective
requires a good estimate of the gradient. The main technical contribution of the
VAE paper is a low-variance gradient estimator based on the reparameterization
trick. Gaussian variables provide the simplest example of the reparameterization
trick. Instead of writing

we may write

where ϵ ∼ N(0,1)
It is easy to check that the two ways of expressing the random variable z lead to
the same distribution. The biggest advantage of this approach is that we many
now write the gradient of an expectation with respect to q(z) (for any f) as -

The gradient is now inside the expectation and we may use MCMC sampling to
get an estimate of the right-hand term. Even though this approach works well,
it suffers from the limitation that it treats latent variables as independent.

Paper: https://arxiv.org/abs/1312.6114
Implementation: https://github.com/pytorch/examples/tree/master/vae
Key points: Treats latent variables independently

2. Ladder VAE

This paper proposes a new inference model, the Ladder Variational
Autoencoder, that recursively corrects the generative distribution by a data
dependent approximate likelihood in a process resembling the Ladder Network.
First, a deterministic upward pass computes the Gaussian likelihood like
contributions:

https://arxiv.org/abs/1312.6114
https://github.com/pytorch/examples/tree/master/vae

This is followed by a stochastic downward pass recursively computing both the
approximate posterior and generative distributions.

Paper: https://papers.nips.cc/paper/6275-ladder-variational-autoencoders.pdf
Implementation: https://github.com/geosada/LVAE
Key points: Assumes chain dependency structure for latent variables.

3. FC VAE
Paper: https://arxiv.org/pdf/1606.04934.pdf
Implementation: https://github.com/openai/iaf
Key points: posterior is iteratively refined, models a fully connected graph over
latent variables

Approach
We propose two main modifications (apart from implementing the paper itself) to the
method already described in the paper (for details regarding other experiments, see the
Experimental results section) -

(i) Replacing top-down inference module with an LSTM network
We try to model the dependency structure in the top-down structure. The set of parent
candidates for Zi is the entire set ZN, ZN-1 … Zi+1 and we try to model this in our top-down
network. After discussing with the TA, we thought this was similar to using an LSTM
instead of the top down network, in which the hidden state from Zi+1 would provide
context from all ZN, ZN-1 … Zi+1 to Zi . Our intuition turned out to be right, and replacing
the top-down version with LSTM actually gave us slightly better results. The only
drawback was the lack in interpretability, since we don’t get an explicit graph structure in
this case.

https://papers.nips.cc/paper/6275-ladder-variational-autoencoders.pdf
https://github.com/geosada/LVAE
https://arxiv.org/pdf/1606.04934.pdf
https://github.com/openai/iaf

(ii) Extending GraphVAE for sequential data
We propose a simple extension of the method described in the paper for handling
sequential data. We allow the parent set of Zit to be the union of {ZN

t, ZN-1
t … Zi+1

t} as
well as {ZN

t-1, ZN-1
t-1 … Z1t-1} i.e. latent variables of both timesteps t and t-1. We further

make the Markov assumption, which forces the dependency structure between Zi’s to
remain fixed across all timesteps. This further enables the approximate posterior to be
decomposed into a product of conditional distributions of the latent variables over all
timesteps, thereby allowing the formulation of a new ELBO term -

Here ZPa(n) includes latent variables of both timesteps t and t-1. The following diagram
gives an overview of our proposition:

Implementation details
We’ve used PyTorch to code up the architecture. There are roughly about a total of
3000 lines of code in the repository. There are 3 main branches, master (for
GraphVAE), LSTM (for GraphLSTMVAE) and vrnn (for RecurrentGraphVAE). You can
find the code here. We coded up the entire architecture ourselves, using the PyTorch
template as our starting point.

Platform
We ran our experiments on Nvidia 1080 Tis.
The timing studies are as follows. For GraphVAEs one epoch takes about 2s, and we
ran it for about 1200 epochs.
For the LSTM variant, one epoch takes around 6s, and we ran it for about 1000 epochs
For our RecurrentGraphVAE, one epoch took about 1500s per epoch.

Experimental results

https://github.com/ys1998/vae-latent-structure
https://github.com/victoresque/pytorch-template
https://github.com/victoresque/pytorch-template

Datasets: Preliminary checks were performed on the standard MNIST dataset. Original
GraphVAE model was evaluated on the binarized MNIST dataset, where each pixel
value was first normalized to [0,1] range followed by discretization to a binary value by
thresholding at 0.5. Each pixel was then modelled by a bernoulli random variable whose
parameter μ was predicted by the VAE. The recurrent variant of GraphVAE model was
evaluated on the preprocessed IAM Online Handwriting dataset. It consists of
sequences of the 3-tuple (x, y, e) where (x, y) denote coordinates of the pen along the
curve and e denotes whether it touches the surface or not. We modelled (x, y) using a
bivariate gaussian with diagonal covariance matrix, and e using a bernoulli distribution.

We perform experiments for the following three tasks. Results obtained in each task are
also provided.

(i) Ensuring that there indeed is some correlation amongst latent variables
One of the preliminary investigations we did was to deduce the correlation between the
latent variables of a standard VAE. For each training sample we plotted the parameters
of each latent variable against those of another. If latent variables were independent of
one another, we should get a uniformly scattered plot. However, the plots (as well as
the correlation matrix) we got clearly indicated that there was some correlation amongst
latent variables. This served as a green flag for going ahead and actually finding the
dependency structure amongst latent variables for this dataset.

The image on the left is the correlation matrix between the predicted parameters of the
distributions of latent variables. Had there been no correlation, this matrix would be the
identity matrix. Non-zero values at non-diagonal positions indicate some correlation
between latent variables (note that only the leading and trailing 4x4 submatrices are
meaningful). Following pictures indicate the presence of some dependency structure in
the distributions of latent variables.

(ii) Latent dependency structure for binarized MNIST dataset
This task involved implementing the GraphVAE model described in the paper, and using
it to learn the structure of a bayesian network over the latent variables. Due to
computational and time constraints, we had to make several simplifying assumptions;
the authors used 5 hidden variables with 16 dimensions per variable, while we used
single-dimensional 5 hidden variables. After 1000 epochs of training, only 5 out of the
10 gates had converged to 0/1 - the remaining gating parameters had either saturated
to an intermediate value, or were changing very slowly. The plot below shows the
variation of μi,j parameters for gates that converged (gate i-j is for the edge directed from
zj to zi).

The orange plots below show the variation in μi,j values for all gates till 1000 epochs. We
observed that after this, other gate values were changing quite slowly. In order to boost
the process, we freezed the values of already converged gates to 0/1 accordingly and
resumed training the model. The blue curve in the plot below depicts this change.

(iii) Replacing the top-down inference module with an LSTM network
The top-down sampling process could be replaced by an LSTM network without
changing the semantics. The original GraphVAE used separate top-down inference
modules for each zi, while the LSTM variant (we call it GraphLSTMVAE in our
experiments) shares those parameters for all zi. Thus, if one isn’t concerned about
explicitly finding the dependency structure (since this information is lost within the
recurrent connections of the LSTM), GraphLSTMVAE provides a less expensive
method to accomplish the same goal. Our experiments support this hypothesis, and
indeed show that GraphLSTMVAE performs better than GraphVAE when trained for the
same number of epochs (red - GraphLSTMVAE, orange - GraphVAE)

(iv) Extending GraphVAE for sequential data
We implemented RecurrentGraphVAE as described earlier, but due to computational
constraints were unable to train the model on IAM online handwriting dataset quite well.
The drastic increase in time per epoch was attributed to two nested for loops, one over
timesteps and the other over a topological ordering of latent variables for each timestep.
We include partially obtained results below for completeness.

Gating parameters for recurrent connections

Gating parameters for self connections

Generation
We tried using the decoder to generate some images by sampling from a unit
multivariate Gaussian and passing it through the decoder. Here are some of the sample
images that we got (5 and 4) -

Here are some of the sample images that were generated during training/reconstruction
(1 and 1) -

Effort

Time Distribution:
Literature Survey: 20%
Coding: 40%
Experiments: 30%
Documentation: 10%

Most Challenging Part:
Resolving NaN mysteries
PyTorch variable freezing

Work Distribution:
Paper implementation (GraphVAE) and RecurrentGraphVAE - Yash
GraphLSTMVAE - Bhavesh and Nihal
Preliminary investigations - Lalit
Documentation - Yash, Bhavesh and Nihal

