
Motion Synthesis by Motion Decomposition

Yash Shah, Arjun Jain
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay
{yashshah, ajain}@cse.iitb.ac.in

Abstract

Encoder-decoder based models have been widely used
for predicting future frames of 3D human motion given a
prior context. However, such models are not able to gener-
ate motion unconditionally, as well as they struggle to pre-
dict frames far in the future. Generative models are apt for
this task, but most of the recent work on them treats mo-
tion as an irreducible sequence of joint vectors. In this re-
port, we propose a novel method of decomposing motion
sequences into a series of bands, with each one serving as a
‘texture’ over the previous one, and also introduce new the-
oretical latent variable models based on this decomposition.
We provide experimental results on one of these models that
uses neural ODEs, and leave others for future research.

1. Introduction
Motion prediction is becoming increasing important for

the domains of human-machine interaction, crowd tracking
and monitoring, obstacle avoidance and many more. Since
no physical law can govern the conscious movements of a
person, there is a dire need of a statistical model that can ap-
proximate this behavior. This presents a tremendous chal-
lenge for machine learning algorithms.

Several discriminative models have already been pro-
posed for this task. However, they have difficulty in predict-
ing actions far in time, and the sequence often converges to
a static pose. Moreover, these models ignore stochasticity
of human motion arising due to the biological nature of hu-
man body. Due to these reasons, a generative model is more
appropriate for modelling its behavior.

However, all the generative models so far treat human
motion as an irreducible sequence of joint vectors. This
treatment overlooks the fact that for a given task, the asso-
ciated motion sequence is mostly similar except for small
subject-specific variations. For example, all humans walk
in almost the same manner. Separating the base and vary-
ing components from a motion sequence can definitely help
to model it better.

2. Related Work
All prior work done in the field of motion prediction

can be broadly classified into encoder-decoder (ERD) based
models and generative models. While the former directly
predicts sequences based on the given context, the latter
models the distribution of the input, from which sequences
are then sampled. ERD models are deterministic in the
sense that given the same input sequence, they will predict
the same output sequence. Generative models, on the other
hand, are much more flexible but difficult to train.

The ERD model was proposed by Katerina et al. [4] for
recognition and prediction of human body pose in videos
and motion capture. Their model incorporated nonlinear en-
coder and decoder networks before and after recurrent lay-
ers and was able to jointly learn representations and their
dynamics. Martinez et al. [6] improved upon existing ar-
chitecture by proposing residual variants, removing teacher-
forcing and allowing multiple actions to be modelled.

FAIR’s QuaterNet [7] was another step forward in this
domain. They proposed models for both short- and long-
term predictions by representing rotations with quaternions
and penalizing absolute position errors instead of angle er-
rors. They also addressed the issues of error accumulation
along the kinematic chain and discontinuities arising due to
parameterizations.

In the generative model domain, stochastic recurrent net-
works and VAE-LSTMs have been popular choices. Among
these, the work by Habibie et al. [5] has been a major in-
spiration. They proposed a novel model in the variational
inference framework that allowed users to produce anima-
tions from high-level control signals; this solved the am-
biguity problem for long sequences, and even reduced the
predictive error drastically.

The inspiration behind motion decomposition is the
work of Pullen et al. [8]. They used motion capture data
to enhance animation by adding detail to various degrees
of freedom, in a process they called texturing. They used
Laplacian pyramids to convert sequences of joint angles
into frequency bands, and used correlation amongst joint
angles to fill in the missing degrees of freedom.

1

3. Motion Decomposition
3.1. General formulation

LetX = {xt}Tt=1 be a sequence of joint vectors xt ∈ Rd
representing 3D human motion, and let f be a smoothing
filter. We obtain a series of smoothed sequences {Ui}ki=1 by
performing repeated 1D temporal convolutions as follows

U1 = X

Ui = f ~ Ui−1, 2 ≤ i ≤ k (1)

We then obtain k bands representing decomposed motion
sequences of X as follows

Xs = Uk

Xi = Uk−i − Uk−i+1, 1 ≤ i ≤ k − 1 (2)

It is easy to observe that X = Xs +
∑k−1
i=1 X

i. Xs being
the smoothest serves as the base sequence, and {Xi}k−1

i=1 as
textures that are progressively added toXs to obtain the ob-
served sequence X . This separation of the base and noise
components should intuitively allow us to model motion
better, with the former capturing underlying task-specific
sequence, and the latter capturing subject-specific varia-
tions.

For simplicity, we model these bands using independent
Gaussian random variables. Thus, for time t we have

xst ∼ N (µs,t, σ
2
s,t)

xit ∼ N (µi,t, σ
2
i,t), 1 ≤ i ≤ k − 1 (3)

which gives

xt ∼ N (µt, σ
2
t) (4)

where µt = µs,t +
∑k−1
i=1 µi,t and σ2

t = σ2
s,t +

∑k−1
i=1 σ

2
i,t.

This result is obtained using a property of inde-
pendent Gaussian random variables and the fact that
xt = xst +

∑k−1
i=1 x

i
t.

3.2. Introducing latent variables

In order to express this idea using the variational frame-
work, we introduce latent variables zjt so that the sequence
{xjt}Tt=1 is generated from them according to the dynamics
shown in Figure 1 (here j ∈ {s, 1 . . . k − 1}). The man-
ner in which the distributions qφ(z|x), p(z) and pθ(x|z) are
computed depends on the model used.

4. Neural ODEs - A Failed Attempt
Neural Ordinary Differential Equations (NODEs) were

introduced as a new family of deep neural networks and pro-
vided a radically different approach for learning to model

zjt

xjt

· · ·zjt−1

xjt−1

· · ·

Figure 1: Dynamics of sequence generation.

continuous-time sequential data. Unlike standard recur-
rent neural networks, which require discretizing observa-
tion intervals, continuously-defined dynamics that are used
in NODEs can naturally incorporate data which arrives at
arbitrary times. Since the same property allowed NODEs
to generate arbitrarily long sequences, we were convinced
that using NODE blocks in our latent variable model could
result in a much more powerful generative model than the
current state-of-the-art.

4.1. Neural Ordinary Differential Equations

NODEs parameterize the derivative of the hidden state
using a neural network. The output of NODE is computed
by a black-box differential equation solver, whose opera-
tions can be backpropagated through, by evaluating the hid-
den unit dynamics f wherever necessary to determine the
solution with the desired accuracy. Mathematically, given
the initial state h(0), NODE learns the function f specified
as

dh(t)
dt

= f(h(t), t, θ) (5)

Starting from the initial state h(0), the NODE can get h(t)
at any time t as the solution to this initial value problem at
time t.

NODE provides a continuous-time, generative approach
for modeling time series by representing them using a la-
tent trajectory. Each trajectory is determined from a local
initial state, zt0 , and a shared global set of latent dynamics
f , parameterized using a neural network. Given observation
times t0, t1, . . . , tN and an initial state zt0 , an ODE solver
produces zt1 , . . . , ztN , which describe the latent state at
each observation. Mathematically,

zt0 ∼ p(zt0) (6)
zt1 , . . . , ztN = ODESolve(zt0 , f, θf , t0, t1, . . . , tN) (7)

xti ∼ p(x | zti , θx) (8)

To obtain the latent representation zt0 , the sequence is
traversed in reverse using an RNN and parameters of the
distribution q(zt0 |{xti , ti}i, θenc) are obtained. Then, a
standard VAE algorithm with an RNN variational posterior
and an ODESolve model is followed:

µ

�

zt0

zt1
RNN encoder

Latent space
Data space

~

q(zt0 |xt0 ...xtN
)

ht0 ht1 htN

ODE Solve(zt0 , f, ✓f , t0, ..., tM)

ztM

…

ztN

ztN+1

Observed Unobserved

x(t)

t0 t1 tN

Time

tN+1 tM

Prediction Extrapolation

t0 t1 tN tN+1 tM

x̂(t)

Figure 2: Computation graph of the latent ODE model. Borrowed from [2].

1. Run an RNN encoder through the time series and infer
the parameters for a posterior over zt0 :

q(zt0 |{xti , ti}i, φ) = N (zt0 |µzt0 , σz0)

where µz0 , σz0 come from the hidden state of
RNN({xti , ti}i, φ)

2. Sample zt0 ∼ q(zt0 |{xti , ti}i)

3. Obtain zt1 , zt2 , . . . , ztM by solving
ODESolve(zt0 , f, θf , t0, . . . , tM)), where f is
the function defining the gradient dz

dt as a function of
z.

4. Maximize ELBO given by∑M
i=1 log p(xti |zti , θx) + log p(zt0)− log q(zt0 |{xti , ti}i, φ)

where p(zt0) = N (0, 1)

This method is summarized in Figure 2.

4.2. Model

We built our latent variable model borrowing ideas from
section 4.1 and extending them to support the motion de-
composition approach discussed in section 3.

We use separate encoder RNNs and latent ODE blocks
for each band obtained on decomposing the motion se-
quence. This follows from the assumption that the latent
variables {zst } ∪i {zit} are independent of each other, and
that {xst} ∪i {xit} are conditionally independent of each
other given {zst } ∪i {zit}.

The modified algorithm is as follows:

1. Run the k RNN encoders through each band ob-
tained by decomposing the motion sequence and

infer the parameters for posteriors over zjt0 where
j ∈ {s, 1 . . . k − 1}:

q(zjt0 |{x
j
ti , ti}i, φj) = N (zjt0 |µjzt0 , σ

j
z0)

where µjz0 , σ
j
z0 come from the hidden state of

RNN({xjti , ti}i, φj).

2. Sample zjt0 ∼ q(zjt0 |{x
j
ti , ti}i) for all j and concate-

nate the sampled values to get zt0 = ||j zjt0 .

3. Obtain zt1 , zt2 , . . . , ztM by solving
ODESolve(zt0 , f, θf , t0, . . . , tM)), where f is
the function defining the gradient dz

dt as a function of
z. Note that f is such that

f(z) = ||jf∗(zj)

That is, it computes derivatives of z separately and then
concatenates them; this ensures that zj’s remain inde-
pendent of each other.

4. Maximize ELBO given by

∑
j

M∑
i=1

(
log p(xjti |z

j
ti , θxj) + log p(zjt0)−

log q(zjt0 |{x
j
ti , ti}i, φj)

)
where p(zjt0) = N (0, 1).

4.3. Training

We trained and evaluated our model on Human3.6M
dataset. Sequences were divided into chunks of length 512,
and then grouped into batches of size 64. We used k = 3

Figure 3: Variation in loss with iterations, k = 3

in our experiments; that is, one base band and two texture
bands. The input to our model were 96-dimensional joint
vectors consisting of 3 euler angles per joint. The latent
hidden dynamics f was modeled using a feedforward neu-
ral network with hidden dimension 128 and latent dimen-
sion 96. SGD with initial learning rate 0.01 and momentum
0.9 was used for optimizing the ELBO described in section
4.1. We followed a learning-rate schedule that decayed it by
half every 50 epochs. We have released our codebase1 for
future research.

4.4. Experimental results

Using NODE out-of-the-box after only slight modifica-
tions did not help at all. The loss, which is defined to be the
negative of ELBO term, decreased progressively (see Figure
3) without any improvement in the quality of samples gener-
ated. Even after 100 epochs of training, the maximum like-
lihood sequences generated were drastically different than

1https://github.com/ys1998/motion-forecast

(a) Ground truth sequences

(b) Maximum likelihood generated sequences

Figure 4: Model after 100 epochs of training, k = 3

the ground truth as can be seen in Figure 4.

We attributed this failure to the inherent nature of NODE
and the manner in which it had been used for this task.
Since NODE learns to approximate the derivative of hidden
state, it is expected to produce ‘smooth’ outputs. Clearly,
the sequences that we were trying to model were non-
differentiable at many points, as can be seen from Figure
4a. Thus, using NODE as it is didn’t prove to be useful.

5. Latent Variable Models

Much prior work has been done to build generative mod-
els for sequences based on the variational framework. We
now examine two such models theoretically, and provide
their variants that are coupled along with the motion de-
composition idea.

5.1. Variational RNN

The variational recurrent neural network, or VRNN, was
proposed by [3] as a recurrent latent variable model for se-
quential data. We provide below the modified steps, using
the same notation as before, for handling with decomposed
motion sequences.

1. First decompose the motion sequence into k bands as
described in section 3. For each band, the following
steps should be performed.

2. Compute parameters of the prior and approximate pos-
terior distributions using the hidden state and input at
time t as shown

[µj,t, σj,t] = φprior(hjt−1)

[µzj ,t, σzj ,t] = φenc(φxj (xjt),h
j
t−1)

3. Sample zjt from the approximate posterior distribution

zjt ∼ N (µzj ,t, diag(σ2
zj ,t))

4. Using the sampled zjt , compute the parameters of the
generating distribution p(xjt |zj≤t, x

j
<t) as shown

[µxj ,t, σxj ,t] = φdec(φzj (zjt),h
j
t−1)

5. Compute the hidden state hjt as shown

hjt = fθ(φ
xj (xjt), φ

zj (zjt),h
j
t−1)

6. Maximize the ELBO given below using the parameters
of the respective distributions computed above

∑
j

T∑
i=1

(
log p(xjt | zj≤t, x

j
<t)−

KL(q(zjt | xj≤t, z
j
<t) || p(zjt | xj<t, zj<t)

)
5.2. Stochastic Recurrent Networks

Stochastic Recurrent Networks, or STORN, were pro-
posed by [1]. They are similar to VRNNs, except the fact
that they restrict the latent variables to a fixed prior distri-
bution of N (0, 1). They have already been tried on mo-
tion capture data for imputing missing values, and have
proved quite effective. Their extension to decomposed mo-
tion sequences is similar to that for VRNNs — use separate
STORNs for each band, but maximize the combined ELBO
term. We refer the reader to the section on VRNNs and [1]
for more details.

6. Conclusion
In this report, we introduced a novel method of mod-

elling motion sequences by decomposing them into base
and texture bands. We test the approach on the recently pro-
posed latent ODE model, and highlight the reasons of our
failure on the same. We also propose extensions to exist-
ing generative models based on the variational framework
which incorporate the decomposition step into themselves,
and also new ELBO terms for the same.

Acknowledgements
I am grateful to my guide, Prof. Arjun Jain, for his con-
stant support throughout this project especially during times
when we were not getting expected results. I am also grate-
ful to Rishabh Dabral and Rahul Mitra for clearing several
of our doubts, providing relevant reading material and also
providing us access to computational resources for our ex-
periments.

References
[1] J. Bayer and C. Osendorfer. Learning stochastic recurrent net-

works. CoRR, abs/1411.7610, 2014. 5
[2] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud.

Neural ordinary differential equations. Advances in Neural
Information Processing Systems, 2018. 3

[3] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and
Y. Bengio. A recurrent latent variable model for sequential
data. In NIPS, 2015. 5

[4] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent
network models for human dynamics. 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 4346–
4354, 2015. 1

[5] I. Habibie, D. Holden, J. Schwarz, J. Yearsley, and T. Komura.
A recurrent variational autoencoder for human motion synthe-
sis. In BMVC, 2017. 1

[6] J. Martinez, M. J. Black, and J. Romero. On human motion
prediction using recurrent neural networks. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 4674–4683, 2017. 1

[7] D. Pavllo, D. Grangier, and M. Auli. Quaternet: A quaternion-
based recurrent model for human motion. In BMVC, 2018. 1

[8] K. Pullen and C. Bregler. Motion capture assisted animation:
texturing and synthesis. In SIGGRAPH, 2002. 1

