
EE769: INTRODUCTION TO MACHINE LEARNING - COURSE PROJECT 1

Handwriting Synthesis and Text Prediction using
Recurrent Neural Networks

Yash Shah, 160050002, R. Sudarsanan, 160050067

Abstract—This report shows the application of a type of recur-
rent neural network (LSTM) to the task of online handwriting
generation and text prediction. We use an ensemble of two deep
LSTM networks, one trained to write with a realistic cursive
handwriting by predicting real-valued data points one at a time,
and the second trained to generate sequences of discrete words
given a prior context. We aim to build a model that can write on
its own by using the outputs of the second network as inputs for
the first. Our model is a combination of two seemingly different
models (by Alex Graves and Mikolov et al.) working together to
accomplish a more difficult task of generating real and discrete
valued sequences having long-range structure.

Index Terms—handwriting synthesis, language modeling,
LSTM, mixture density network, attention window.

I. INTRODUCTION

RECURRENT Neural Networks (RNNs) have been widely
used for sequence modeling in various fields, especially

Natural Language Processing, due to their ability to ‘remem-
ber’ patterns and structure over a long range. Long Short
Term Memory (LSTM) networks are a modification of vanilla
RNNs designed to cope better with the problem of vanishing
gradients when the model is unrolled over a long time interval.
Given an input xt, hidden state ht−1 and cell state ct−1, a
LSTM cell generates the outputs for timestep t according to
these equations:

it = σ(Wxixt +Whiht1 +Wcict1 + bi) (1)
ft = σ(Wxfxt +Whfht1 +Wcfct1 + bf ) (2)

ct = ft · ct1 + it · tanh(Wxcxt +Whcht1 + bc) (3)
ot = σ(Wxoxt +Whoht1 +Wcoct + bo) (4)

ht = ot · tanh(ct) (5)

Another important aspect to look upon (especially in our
scenario) is the nature of outputs ‘required’. Most supervised
learning algorithms deal with classification problems, for
which the outputs are either discrete-valued or chosen to
be Gaussian. The task of handwriting synthesis, along with
several others, requires the model to predict non-Gaussian or
multivariate outputs. Such inverse problems cannot be modeled
simply by using the Gaussian assumption as it would lead to
poor predictions. In order to tackle such problems, mixture
density networks are used.

If Gaussian components are used in the MDN, the proba-
bility distribution can be expressed as:

p(t|x) =
K∑

k=1

πk(x) · N
(
t|µk(x), σ

2
k(x)

)
(6)

Fig. 1. Source: Alex Graves’ paper: Generating Sequences With Recurrent
Neural Networks [1]

We have used both LSTMs and MDNs in our model to
effectively handle discrete words and real-valued, bivariate
Gaussian outputs respectively.

II. MODEL ARCHITECTURES

As forementioned, our model is a combination of two inde-
pendent models, a Prediction Model for generating sentences
given a prior context, and a Synthesis Model for generating
handwriting given an input string. Both of them are described
in detail below.

A. Synthesis model

Basic recurrent neural network prediction architecture is
used here. Input consists of the start point for the pen in the
2D plane and the one hot encoded string. The implemented
network has two LSTM hidden layer, a window layer and a
MDN layer. The hidden layers are stacked on top of each
other with window layer between the 1st and the 2nd hidden
LSTM layers. There are skip connections from the input to all
hidden layers and from all hidden layers to the MDN layer
except from the window layer. The final output of a particular
timestep becomes the input of the next timestep.

1) Input layer: The input starting point is represented as a
3 × 1 vector denoting the x-coordinate and the y-coordinates
relative to the previous point and the end-of-stroke probability.
The value of the end-of-stroke is 1 when the pen is up denoting
a discontinuity in the line. The string is converted to a one-
hot vector C with a vector mapping for each character. The
encoded string and the point are fed as input to network.



EE769: INTRODUCTION TO MACHINE LEARNING - COURSE PROJECT 2

2) Window layer: It takes input form the 1st hidden lstm
layer and the encoded string as the input. Given a length U
character sequence c and the max timestep T, the soft window
wt for the timestep t (1 ≤ t ≤ T ) is defined by the following
discrete convolution with a mixture of K Gaussian functions.

φ(t, u) =

K∑
k=1

αk
t exp(−βk

t (κ
k
t − u)2) (7)

wt =

U∑
u=1

φ(t, u)cu (8)

Here φ(t, u) is the window weight of cu at timestep t.
The κt parameters control the location of the window, the
βt parameters control the width of the window and the αt

parameters control the importance of the window within the
mixture. The window weight φ(t, u) can be loosely interpreted
as the networks belief that it is writing character cu at time t.
The size 3K vector p of the window parameters is detemined
as follows by the outputs of the first hidden layer of the
network:

(α̂t, β̂t, κ̂t) =Wh1ph
1
t + bp (9)

αt = exp(α̂t) (10)

βt = exp(β̂t) (11)
κt = κt−1 + α̂t (12)

3) First lstm layer: This layer has incoming links for the
input, output of the window layer of the previous timestep and
output of the same layer in the previous timestep. The update
equation is given by:

h1t = LSTM(Wih1xt +Wh1h1h1t−1 +Wwh1wt−1 + b1h) (13)

where the LSTM(.) function denotes that this is fed as the
input to the LSTM cell.

4) nth hidden lstm layer: All the lstm layer other than
the 1st lstm layer have input, output of the previous lstm
layer, output of the window layer and their own output of
the previous timestep as input. The update equation is given
by:

hnt = LSTM(Wihnxt +Whn−1hnh
n−1
t +Whnhnh

n
t−1

+Wwhnwt + bnh)
(14)

5) MDN layer: This layer has connections from all the
hidden lstm layers and the 1 + 6M parameters i.e. ε̂t and the
M sets {π̂j

t , µ̂
j
xt, µ̂

j
yt, σ̂

j
xt, σ̂

j
yt, ρ̂

j
t}Mj=1 are extracted from the

outputs of the hidden layers concatenated together through
matrix multiplications. The output vector is calculated as
follows:

et =
1

1 + exp(ε̂t)
⇒ εt ∈ (0, 1) (15)

πj
t =

exp(π̂j
t )∑M

j′=1 exp(π̂
j
t )

(16)

µj
t = µ̂j

t (17)
σj
t = exp(σ̂j

t ) (18)
ρjt = tanh(ρ̂jt ) (19)

During training, the probability density Pr(xt+1|yt) of the
next input xt+1 given the output vector yt is defined as
follows:

M∑
j=1

πj
tN (xt+1|µj

t , σ
j
t , ρ

j
t )

{
εt if (xt+1)3 = 1

1− εt otherwise
(20)

where

N (x|µ, σ, ρ) = 1

2πσ1σ2
√

1− ρ2
exp[

−Z
2(1− ρ2)

] (21)

Z =
(x1 − µ1)

2

σ2
1

(x2 − µ2)
2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
(22)

When this model is used for generating handwriting, one
of the gaussians is chosen from the given set with the
probabilities π and then a point is sampled from it.

6) Loss calculation: We have used log-likelihood loss L(x)
over the output of the MDN layer as follows:

T∑
t=1

−log(
∑
j

π
j
t
N(xt+1|µ

j
t
, σ
j
t
, ρ
j
t
)) −

{
log ε if (xt+1)3 = 1

log(1 − εt) otherwise (23)

B. Prediction model

This model is a vanilla implementation of a similar one
introduced by Mikolov et al. It sequentially generates a pre-
dictive probability distribution, given a word and surrounding
context, spanning the entire training vocabulary and ‘picks’
the next word based on its probability mass. The picked word
is used as the input for predicting the remain sequence and
this is repeated till the end-of-sentence token is obtained.

1) Embedding layer: This layer performed the task of
converting word indices to word vectors by multiplying the
corresponding one-hot vectors by an embedding matrix We.
This matrix was initialized randomly, and it learnt the word
vectors by itself as the network trained. This word vector was
fed to the LSTM network.

xt =We · Uwt (24)

where Uwt ∈ RV×1 is the one-hot representation of input
word at time t.

2) Hidden LSTM layers: This layer basically contains
stacked LSTM cells enclosed within dropout wrappers. This
wrapping made the model more robust and easily generaliz-
able. We had used dropout over four parameters - input to
LSTM stack, output of one LSTM layer that was fed to the
next layer, hidden state and final output. Denoting the dropout
masks as Di, Dj , Ds and Do respectively, the equations for
outputs at time t become:

a1 = LSTM(Di � xt;Ds � ht−1;Ds � Ct−1) (25)
ak = LSTM(Dj � ak−1;Ds � ht−1;Ds � Ct−1) (26)

ot = Do � LSTM(Dj � an−1;Ds � ht−1;Ds � Ct−1) (27)



EE769: INTRODUCTION TO MACHINE LEARNING - COURSE PROJECT 3

3) Output layer and loss calculation: We used the standard
cross-entropy loss over the expected output (which is a one-
hot vector representation of the expected word) and the logits
obtained after applying softmax function on the activations of
the previous layer, that was summed over all time-steps. Thus,

L(x) =
T∑

t=1

V∑
i=1

−yit · log(oit) (28)

oit =
exp(Woait + bo)∑V
j=1 exp(Woajt + bo)

(29)

III. IMPLEMENTATION

We used python3 language for implementing all the
code for program. tensorflow-gpu package was used
for training the network. The synthesis model was trained
using preprocessed IAM Online Handwriting dataset, and the
prediction model was trained using the PTB dataset.

A. Synthesis model

In the generation model two LSTM layers were used with
LSTM size of 200. The window layer and the MDN layer
had sets of 10 and 20 gaussians respectively. Adam optimizer
was used for learning and the starting learning rate was 1e-3
and decaying to half every thousand steps. The network was
trained for 200 epochs which takes approximately 6hrs to train
using GPU.

B. Prediction model

The prediction model network had 2 hidden LSTM layers
of size 650. The input, intra, state and the output drop prob-
abilities are 0.5, 0.5, 0 and 0.5 respectively. SGD optimizer
was used and the network was trained for 50 epochs, which
took roughly 8hrs to train on GPU.

IV. RESULTS

The following handwriting samples were obtained by plot-
ting the outputs of the synthesis model:

These samples were generated by the prediction model:
• Prior sentence: a girl likes, number of words: 8
a girl likes fiber fossil jittery
guber-peters express line-item
ambrosiano accords

• Prior sentence: he was, number of words: 5
he was matching neatly punishment
colombian tramp

• Prior sentence: the sun, number of words: 7
the sun retains alexander admits
suspension destroyed intend really

As we can see, the prediction model gives less meaningful
sentences. This is because the dataset which we used (PTB)
is quite small and the model implementation is quite basic.
Moreover, the generated sentences are rarely punctuated, mak-
ing them even less meaningful.

V. CONCLUSION

This project served as a great learning experience for us.
We learnt in detail about the working of and math behind
recurrent neural networks, LSTMs in particular, and their
usage in generating discrete and real valued sequences. We
also learnt how to tackle inverse problems, the problems where
non-Gaussian or multivariate output is required, using a special
variant of Mixture Density Networks, Mixture of Gaussians.
We were also introduced to the concept of attention, and its
application to this task.

ACKNOWLEDGMENT

We would like to sincerely thank our professor, Prof.
Amit Sethi, for his constant support and guidance throughout
this project and for providing us an opportunity to explore
and apply the knowledge gained in the course to practical
scenarios.

REFERENCES

[1] G. Alex, Generating sequences with Recurrent Neural Networks, 2014.
[2] Mikolov et al., Recurrent Neural Network based Language Model, 2010.
[3] C. Bishop, Pattern Recognition and Machine Learning, 2006.


