SEG-LM: A Factored-Output Model for Morphologically Rich Languages

Yash Shah*and Ishan Tarunesh*and Preethi Jyothi
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
{yvashshah, ishan,pjyothi}@cse.iitb.ac.in

Abstract

Neural language models (LMs) have shown
to benefit significantly from enhancing word
vectors with subword-level information,
especially for morphologically rich languages.
This has been mainly tackled by providing
subword-level information as an input; using
subword units in the output layer has been
far less explored. In this work, we propose
a factored output LM that predicts a mixture
of two output layers, one that is purely-word
based and the other that predicts a sequence of
subwords acquired using a new unsupervised
word segmentation algorithm. The mixture
weights are jointly learned, along with the
word and subword probabilities. We also
introduce a separate loss term during training
that helps determine which output layer is
more informative for a given word. We focus
on two morphologically complex Indian
languages, Hindi and Tamil, and observe
significant perplexity gains on both using
the factored output models when compared
with a competitive baseline that incorporates
subword level information in the output layer.

1 Introduction

Language modeling is a fundamental problem in
NLP that involves predicting the next word given
its context. Recurrent neural network language
models (RNNLMs) have become the de facto
standard for language modeling. They typically
produce a next-word probability distribution over
a fixed vocabulary of words. Such an approach
has two main limitations. Word embeddings for
infrequently occurring words in training data are
poorly estimated. Also, predictions at word level
are largely immune to the subword structure in
words. Both these limitations are exacerbated for
morphologically rich languages in which words

* Joint first authors

have numerous morphological variants, leading
to large vocabularies where a significant fraction
of words appear in the long tail of the word
distribution. Leveraging subword information
becomes especially important for such languages.

In prior work, RNNLMs have typically
exploited subword-level information at the input
side and learn improved word embeddings
by utilizing morpheme- and character-level
information. Vania and Lopez (2017) present an
exhaustive comparison of many such methods.
Incorporating subword information within the
output layer of RNNLMs has received less
attention. We explore this direction and make the
following specific contributions:

o We present SEG-LM, a mixture model-based
LM with a factored output layer that makes
use of an unsupervised word segmentation
algorithm to identify subword units.

e We use our segmentation algorithm (that
decides whether or not a word should be
segmented) as a form of supervision over the
mixture weights and add a separate loss term
to penalize deviations from these labels.

e We demonstrate the
our proposed approach by showing
large reductions in perplexity on two
morphologically rich languages, Hindi and
Tamil, compared to a competitive baseline.

effectiveness of

2 SEG-LM: Model Description

For a given word w;, an RNNLM encodes
its context wi,...,wy—1 into a fixed-size
representation, h;. An RNNLM predicts w;
by applying a softmax function to an affine
transformation of h; (W and b are model
parameters):

Pr(wwy, ..., w—1) = softmax(Wh; + b)

We depart from this standard formulation and
use a mixture of K different softmax distributions
at the output layer. Compared to using a single
softmax distribution, mixture models have led
to LMs with improved generalization abilities
that translate to substantial reductions in test
perplexities (Neubig and Dyer, 2016; Matthews
et al., 2018; Yang et al., 2018). If \; € [1, K]
denotes the model at time ¢, the next-word
distribution becomes:

K
Pr(wt|{wi f;i) = ZPr(wt,)\t = k‘|ht)
K k=1
= > Pr(\ = klhy) Pr(wi|A = k,hy) (1)
k=1
We define a mixture model with two
components: 1) Generates words from a fixed
vocabulary 2) Generates a sequence of subword
units for a word, that are discovered using an
unsupervised word segmentation algorithm. We
present four variants of this mixture model in the
rest of this section.

2.1 SEG: Unsupervised word segmentation

Prior work has shown improved LM performance
by using language-specific morphological
analyzers (Matthews et al., 2018). Since it may
not always be feasible to easily obtain access
to morphological analyzers for a language, we
propose an unsupervised word segmentation

Algo 1: Unsupervised word segmentation

Input: vocabulary V, threshold parameters ds and dy,
Output: rules R and R,,, word splits S
Ls < SUFFIXES(V), Ly, <— PREFIXES(V) ;
for (817 82) S LS s.t. s1 < s2 do
wts[s1, 52] < [{(w1,w2) € V? 1
Ju, w1 = u+ s1,w2 = u+ S2}

end
Rs « {(s1,82) | wts[s1,52] > s 0r 51 = 52 = €};
for (phpz) € LIQ:, s.t. p1 < p2 do
Wty [p1, pa] <+ [{(w1,w2) € V? 3
Ju, w1 = p1 + u, w2 = p2 + u}

end

Rp + {(p1,p2) | wtp[p1,p2] > 0p orp1 = p2 = €};

R «+ {(v,w) c V2|3(p1,p2) € Rp, (51,82) €Rs;
and u, s.t.v =p1 +u+ s1,w =p2 +u—+s2};

forv € V do

| Wtstem[V] <~ {w € V| (v,w) € R}|;
end
for w € V do

stem < arg max (Whstem[v]) ;
vi(v,w)ER
Let u, (p1,p2) € Ry, (s1,52) € Rs bes.t.;
stem =p1 +u+ s1, w =p2+u+S2;
S(w) + (p2,stem, s2) ;
end

algorithm to discover subword units in a word.
We assume a word could either remain
unsegmented or be split into a prefix, stem and
suffix.! In our mixture model, we define two
probability distributions for wy, Pr(w|A\s = 1, hy)
and Pr(wt|)\t == 2,ht). Pr(wt\)\t = 1,ht) is the
standard softmax distribution over the entire word
vocabulary. Pr(wA\; = 2,h;) is a product of
probabilities estimated over the prefix, stem and
suffix that wy is segmented into. If wy is written as

a tuple (w}", wit, with), then:

Pr(wg| A = 2,hy) = Pr(w?™, w', w$*|\; = 2, hy)
= Pr(wi'|\; = 2, hy) Pr(w|w, \; = 2,hy)
Pr(ww, w', \y = 2, hy))

Several unsupervised word segmentation
algorithms have been previously developed
to discover the morphology of a
language (Goldsmith, 2001; Creutz and Lagus,
2002; Pitler and Keshava, 2007; Cotterell et al.,
2016). However, in this work, we did not
examine the impact of changing the segmentation
algorithm on LM performance. We leave this
exploration for future work.

Algorithm 1 describes the pseudocode of our
unsupervised segmentation method. L, and Lg
refer to all prefixes and suffixes of words in the
vocabulary, which we implemented using forward
and backward tries. We create (+s;, —s;) suffix
pairs such that removing suffix s; followed by
addition of suffix s; to a word forms another valid
word.> Frequently occurring pairs are chosen
to form the set of prefix/suffix rules governing
segmentation. Finally, of all possible splits for
a word, the one with the most frequent stem is
selected as its canonical segmentation.

We use the standard cross-entropy loss function
computed over all training tokens (indexed by
t=1,....7), Lsgg = —% thllogPr(wt|ht)
where Pr(w;|h;) can be substituted as in Eqn 1.

2.2 SEG+BCE: Additional loss term

For every word w;, we define a binary variable
oy that is set to O when it remains unsegmented
according to Algorithm 1 and is set to 1 otherwise.
To help the mixture weights learn whether or

"We also experiment with dropping prefixes altogether
and only using a stem+suffix combination.

*For every rule (4a;, —a;), we enforce a; < a; which is
true if |a;| < |aj|, or |a;| = |a;| and a; is lexicographically
smaller than a;.

softmax.

prefix fx\
embedding E
LI IITTTIT [TTT

]+ J+[ITTTTTTTTT]
select
target suffix
ffi
emzltledlc):l(ing @ softmex
LTI T T T+ T ITITTTT]
select
target stem [|
word / stem) softmax
embedding (X)----Softmax & |
C T \ S
CITITTTTTTT) COTTTTTTTTT] O
{1 TTTTTTT] P(word)

LSTM hidden state

Figure 1: Schematic diagram illustrating our model
architecture.

not the current word should be segmented,
we add a binary cross-entropy term Lgcg to
the loss function: Lgsgg+BcE = Lsec + NLBCE-
Here, Lpcp = —= Y, arlog P(\¢ = 2|hy) +
(1 —ay)log(l — P(A\ = 2|h;)) and 7 is a tunable
hyperparameter.

2.3 SEG+BCE+EMBED: Augment input
word embeddings

Incorporating side information as an input to
an RNNLM gives consistent improvements in
performance (Hoang et al., 2016). We provide the
bit ci; as a side input, along with every word wy,
and encode it as a fixed-size embedding.

Figure 1 shows a schematic diagram illustrating
the output layers of our proposed framework. (The
input side of our architecture is exactly as specified
by Gerz et al. (2018).) Two separate affine
transformations of h; are learned, corresponding
to unsegmented and segmented words; a softmax
layer applied to these transformations gives
Pr(w§‘|/\t = 1,ht) and Pr(w§t|)\t = 2,ht),
respectively. A third affine transformation
followed by a sigmoid activation gives the
mixture weights Pr(A:|/h;). For a word w; =
(W™, wit, witt), as shown in Eqn 2, its suffix
probability is computed by conditioning on both
wi' and h;. This is implemented by first
concatenating the vector h; with the embedding
corresponding to wj' and applying softmax to
an affine transformation of this concatenated
vector. (Prefix probabilities are similarly learned
by conditioning on both the stem and the suffix.)

oy Language

Statistic i Ta
of training tokens 666,446 507,226
Vocabulary Size 50,384 106,403
Type / Token (train) 0.08 0.21
of dev tokens 50,042 39,379
of test tokens 49,125 39,661
OoV rate (test) 5.3% 15.2%

Table 1: Dataset statistics.

2.4 NOSEG: No word segmentation

In order to distinguish the improvements in
performance obtained by using the segmentation
algorithm from the improvements obtained by
using a mixture of softmax distributions at the
output layer without any segmentation, we train
a model that uses a mixture of two softmax
distributions both operating at the word-level.

3 Experiments

3.1 Dataset description

We use the Hindi (Hi) and Tamil (Ta) datasets,
from Gerz et al. (2018), along with their specified
training/dev/test splits. Table 1 shows detailed
statistics for these two languages. Ta is more
morphologically complex compared to Hi, which
is apparent from the higher out-of-vocabulary
(OoV) rate and higher type-token ratio in Table 1.

3.2 Implementation Details

We used PyTorch (Paszke et al., 2017) to
implement all our models. We report two
baseline numbers: (A) CHAR-CNN-LSTM:
RNNLM proposed by Kim et al. (2016) that
uses character-level inputs and works well on
a variety of languages and (B) LMMRL:
RNNLM proposed by Gerz et al. (2018) that
improves over Kim et al. (2016) by finetuning
the output embeddings to capture subword-level
information. (Our reimplementations of these
baselines produce much better numbers than those
reported in Gerz et al. (2018))

The word/stem, prefix and suffix embeddings
were of size 500, 40 and 40 for Hi and 800,
70 and 70 for Ta, respectively. For the SEG +
BCE + EMBED model, we use an embedding of
size 10 to encode «;. All models were trained
for 15 epochs using the Adam optimizer (Kingma
and Ba, 2015) with an initial learning rate of
Se-5 that was decayed by 0.8 every 5 epochs.

Language
Model i Ta
CHAR-CNN-LSTM 366.23 1871.87
LMMRL 366.21 1843.53
NOSEG(2) 268.56 1197.77
SEG(2) 249.59 952.39
SEG(2) + BCE 248.42 815.73
SEG(2) + BCE + EMBED 235.24 921.84
NOSEG(3) 27546 1155.49
SEG(3) 270.67 1106.57
SEG(3) + BCE 26595 1125.68

SEG(3) + BCE + EMBED 228.68 893.95

Table 2: Perplexity scores on the Hi and Ta test sets. (2)
and (3) are used to differentiate between a stem/suffix
and a prefix/stem/suffix segmentation, respectively.

Following Gerz et al. (2018), we set <unk>’s
embedding, after every training epoch, to a sample
drawn from a multivariate Gaussian distribution
whose mean and variance are computed using
the embeddings of all other words. The number
of model parameters in LMMRL for Hi and
Ta are 45.6M and 82.0M; the largest SEG-LM
models for Hi and Ta contain 38.8M and 88.4M
parameters, respectively.

3.3 Results and analysis

Table 2 summarizes test perplexity (ppl) scores
on Hi and Ta. The NOSEG models give large
reductions in ppl compared to the baselines,
highlighting the benefits from using a mixture of
softmax distributions.> Using the segmentation
algorithm further improves ppl scores, when
compared to NOSEG. Including the BCE loss,
together with including o4 as part of the input
gives the best ppl scores for each language (except
in the case of SEG(2) for Ta).

To understand the notably large ppl
improvements better, we compute ppl differences
compared to LMMRL by considering subsets of
test tokens. First, we consider test tokens that
were unsegmented (o = 0) followed by tokens
that were segmented (o = 1). We see enormous
gains in ppl on the segmented tokens compared
to the unsegmented tokens. Next, we consider
<unk> test tokens that can be recovered using
the prefix/suffix rules returned by our segmentor.
There are 348 and 1202 such tokens in Hi and Ta,

We try to match the performance of NOSEG by
increasing the size of word embeddings in the LMMRL
baseline. However, this leads to overfitting.

Language

Model Hi Ta
SEG(2) [= 0] 68.07 427.83
SEG(2) + BCE [a = 0] 69.09 499.66
SEG(2) + BCE + EMBED [a = 0] 50.48 352.99
SEG(2) [a = 1] 2370.83 10141.61
SEG(2) + BCE [a = 1] 2355.10 11174.73
SEG(2) + BCE + EMBED [aw = 1] 434486 15397.68
SEG(2) [<unk>] 4906.35 16603.92
SEG(2) + BCE [<unk>] 4930.95 18618.97
SEG(2) + BCE + EMBED [<unk>] -18805.0 15590.24

Table 3: Differences in test ppl compared to LMMRL.

respectively. We see large ppl improvements on
these tokens, except from the SEG(2) + BCE +
EMBED model for Hi. This further validates our
factored model in being able to recover words that
do not appear in the vocabulary.

4 Related Work

Prior work has investigated various ways in which
morpheme or character-level information can be
provided as an input to RNNLMs (dos Santos
and Zadrozny, 2014; Kim et al., 2016; Ling
et al., 2015; Lample et al., 2016). Approaches
tailored specifically for morphologically rich
languages include the wuse of constituent
morpheme embeddings (Botha and Blunsom,
2014), using morphological recursive neural
networks (Luong et al., 2013), concatenating
word and character embeddings (Verwimp et al.,
2017) and using other factored representations
of words (Vylomova et al., 2017; Ataman and
Federico, 2018; Labeau and Allauzen, 2017).
Fewer approaches have focused on injecting
subword level information into the output layer
of LMs. Gerz et al. (2018) proposed a finetuning
technique for word embeddings using a loss based
on character-level similarities. Yuret and Biici
(2009) and Varjokallio and Klakow (2016) split
words into subwords and trained an LM using
subwords as tokens. Matthews et al. (2018) is
most closely related to our work. They used a
mixture model to predict at the word, morpheme
and character-level; however, they did not use
supervision for the mixture weights and they used
language-specific morphological analyzers.

5 Conclusions

We present SEG-LM that predicts a mixture
of two output layers producing segmented and
unsegmented words. Words are segmented into

subword units using an unsupervised algorithm.
Our models achieve substantial reductions in
perplexity on two morphologically complex
languages, Hindi and Tamil. In future work,
we will examine the effect of using different
segmentation algorithms on LM performance.

References
Duygu Ataman and Marcello Federico.
2018. Compositional representation of

morphologically-rich input for neural machine
translation. In ACL.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In ICML.

Ryan Cotterell, Arun Kumar, and Hinrich Schiitze.
2016. Morphological segmentation inside-out. In
EMNLP.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. CoRR, cs.CL/0205057.

Daniela Gerz, Ivan Vulic, Edoardo Maria Ponti, Jason
Naradowsky, Roi Reichart, and Anna Korhonen.
2018. Language modeling for morphologically
rich languages: Character-aware modeling for
word-level prediction. Transactions of the
Association for Computational Linguistics,
6:451-465.

John A. Goldsmith. 2001. Unsupervised learning
of the morphology of a natural language.
Computational Linguistics, 27:153-198.

Cong Duy Vu Hoang, Trevor Cohn, and Gholamreza
Haffari. 2016. Incorporating side information into
recurrent neural network language models. In
HLT-NAACL.

Yoon Kim, Yacine Jernite, David A Sontag, and
Alexander M. Rush. 2016. Character-aware neural
language models. In AAAL

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Adam:
CoRR,

Matthieu Labeau and Alexandre Allauzen. 2017.
Character and subword-based word representation
for neural language modeling prediction. In
SWCN@EMNLP.

Guillaume Lample, Miguel Ballesteros, Sandeep
Subramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity
recognition. In HLT-NAACL.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based neural machine
translation. CoRR, abs/1511.04586.

Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with
recursive neural networks for morphology. In
CoNLL.

Austin Matthews, Graham Neubig, and Chris
Dyer. 2018. Using morphological knowledge
in open-vocabulary neural language models. In
NAACL-HLT.

Graham Neubig and Chris Dyer. 2016. Generalizing
and hybridizing count-based and neural language
models. In EMNLP.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Emily Pitler and Samarth Keshava. 2007. A
segmentation approach to morpheme analysis.

Cicero Nogueira dos Santos and Bianca Zadrozny.
2014. Learning character-level representations for
part-of-speech tagging. In ICML.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
In ACL.

Matti Varjokallio and Dietrich Klakow. 2016.
Unsupervised morph segmentation and statistical
language models for vocabulary expansion. In ACL.

Lyan Verwimp, Joris Pelemans, Hugo Van hamme,
and Patrick Wambacq. 2017. Character-word Istm
language models. In EACL.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and
Gholamreza Haffari. 2017. Word representation
models for morphologically rich languages in neural
machine translation. In SWCN@EMNLP.

Zhilin Yang, Zihang Dai, Ruslan R. Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax
bottleneck: A high-rank rnn language model. CoRR,
abs/1711.03953.

Deniz Yuret and Ergun Biici. 2009. Modeling
morphologically rich languages using split words
and unstructured dependencies. In ACL/IJCNLP.

