
Exploring Hybrid Language Models for Morphologically Rich Languages

Yash Shah, Preethi Jyothi
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay
{yashshah,pjyothi}@cse.iitb.ac.in

Abstract

Word and character-level deep learning
language models have been used exten-
sively, but each one independently suf-
fers from several drawbacks — word-level
LMs are not robust to presence of OoV
words; and although character-level LMs
partially solve this issue, they often fail
to capture long range context dependen-
cies. Hybrid LMs seem to capture the best
of both LMs, by using subword informa-
tion to construct vector representations for
words which are then used for modelling
the language. In this seminar report, we
explore one such model in detail and sug-
gest variants that try to overcome some of
its shortcomings. We leave their imple-
mentation and analysis for future work.

1 Introduction

A language model assigns probabilities to se-
quences of tokens sampled from a vocabulary; a
high probability implying that that sequence is
more likely to appear in the language. These to-
kens are words for a word-level LM and charac-
ters for a character-level LM. Mathematically,

s = {ti}mi=1, ti ∈ V

s
LM−→ P (s), P (s) ∈ [0, 1]

Since the order in which these tokens occur is sig-
nificant, this probability is expressed as a product
of conditional probabilities — each term repre-
senting the occurence probability of a token given
that all previous tokens have been encountered.

P ({ti}mi=1) =

m∏
i=1

P (ti|ti−1, ti−2, ...t1)

If we neglect the contribution of distant tokens in
the sequence, the conditional probabilities can be
relaxed so that they consider only the n − 1 pre-
viously encountered tokens for any given token,
leading to the more common n-gram LM defini-
tion:

Pn({ti}mi=1) =

m∏
i=1

P (ti|ti−1, ti−2, ...ti−n−1)

Deep learning based neural language models try
to mimic these conditional probabilities by learn-
ing dependencies amongst tokens from a given
training corpus. Common word-level language
models construct a finite-sized vocabulary from
the training data and gradually modify the param-
eters based on contextual information — each oc-
currence of a word token in training data con-
tributes to the estimate of a word vector assigned
to this word type. Due to this, low-frequency
and unseen words are left with incorrect estimates
leading to poor performance. This is especially
the case with agglutinative languages like Tamil
and Kannada, where tokens can keep combining
meaningfully with each other, leading to a seem-
ingly infinite vocabulary.

Character-level language models were intro-
duced to tackle this problem since most of the
out-of-vocabulary words could still be expressed
in terms of the characters in vocabulary. The ar-
rangement of characters within a word carries sig-
nificant information which could be used for mak-
ing reasonable estimates for OoV word vectors.
This subword-level information can be captured
in different tokenization units, such as characters,
ngrams, morphemes or phonemes. While ngrams
are simple, fix-sized groupings of characters,
morphemes and phonemes are groups of struc-
turally/phonetically relevant characters. Since
finding accurate morpheme/phoneme representa-

tions for every word in the training corpus is an-
other task altogether, most models use characters
and character ngrams for extracting subword level
information.

An important model for this task is the char-
CNN-LSTM, which uses convolutional nets with
varying kernel sizes to combine character vectors
for obtaining the vector representation of the cor-
responding word. This is beneficial since convolu-
tions are parallelizable, as well as they implicitly
represent operations on ngram clusters (for kernels
of width n). These generated word vectors are
then fed as input to a traditional LSTM network
for learning global information.

Such models that make use of both subword and
word-level information for learning are referred to
as hybrid language models. char-CNN-LSTM is
one such model aiming to combine information at
the input side of LMs. In this seminar, we explore
the work of Gerz et al. on the same, and suggest
variants for overcoming certain shortcomings of
their model.

2 Literature Survey

Our work is basically an analysis and extension of
that by Gerz et al., who used a char-CNN-LSTM
with a novel objective function for modelling 50
languages of varying type. We describe the im-
portant aspects of their model here.

2.1 Constructing Vocabulary

Word vocabulary was constructed by consider-
ing character clusters separated by whitespaces
as words. Additional tokens, namely <unk> for
OoV words, <s> for start-of-sentence and </s>
for end-of-sentence, were also introduced. Char-
acter vocabulary was constructed by including ev-
ery character in the training data. An additional to-
ken <unk> was also added in this vocabulary for
handling unseen characters at test time. Start-of-
word (<w>) and end-of-word (</w>) tokens were
also added to the vocabulary (we present our re-
sults both with and without including them).

2.2 Vector Spaces

Three different vector spaces or embeddings were
created — a character embedding, a character-
aware input word embedding and an output word
embedding. The two word embeddings were in-
dependent of each other; the input embedding was
used for storing the word vectors generated using

characters’ vector representations, while the out-
put embedding was used for next-word prediction.
Dimensions of constituent vectors were dc, dwin

and dwout respectively.

2.3 Word Vector Generation

For a word of length w, vectors corresponding to
the w constituent characters were first extracted
from the character embedding, and concatenated
sideways to form a dc × w matrix. This matrix
was then padded with M − w columns of dc di-
mensional zero vectors (here M is the maximum
word length for the entire training corpus) to form
a dc ×M dimensional matrix, whose size would
be the same for every word.

This word matrix was then convolved with fil-
ters of widths {ki}fi=1 and depths {di}fi=1 to gen-
erate di×(M−ki+1) dimensional outputs. Each
column of this output represented the response of
the corresponding ki-gram character cluster to the
kernel weight, with later columns depicting re-
sponses at later time. These output matrices were
max-pooled along the time dimension to get di×1
vectors, which were concatenated columnwise to
generate a large

(∑f
i=1 di

)
×1 word vector. These

vectors filled the character-aware input word em-
bedding, and so dwin =

∑f
i=1 di.

2.4 LSTM Network

The generated word vector, ywt is first passed to a
2-layer highway network (it is essentially a feed-
forward network with skip connections) for under-
going transformation. The transformed word vec-
tor, hwt , is then passed on to the 2-layer LSTM
network. The network yields one output vector
owt per word in the sequence, given all previous
time steps [hw1 , ...hwt−1]. To predict the next word
wt+1, one takes the dot product of the vector owt

with the output word embedding to get a vector
pt. It is normalized to contain values between 0
and 1, representing a probability distribution over
the next word. This corresponds to calculating the
softmax function for every word in Vw.

hwt = highway(ywt)

owt = LSTM(hwt | hwt−1 ... hw1)

p̂t = owt · Vwout,wt

pt,wi =
exp(p̂t,wi)∑
w∈V exp(p̂t,w)

2.5 Objective Function
The model used two different objective functions,
each one for a separate purpose.

2.5.1 Training
Standard cross-entropy loss between the output of
each time step pt, and the target one-hot distribu-
tion, was used during training.

LCE(t) = −log(pt,wt+1)

2.5.2 Fine-tuning
Since the output word embedding did not learn
from subword information (since it was trained
specifically for single words), it lead to unre-
liable estimates for infrequent words. Also, a
character-only model is not able to capture word-
level semantics efficiently and thus degrades per-
formance. In order to tackle this, the authors
injected shared subword semantics (captured in
the character-aware input word embedding) into
the output word embedding to additionally reflect
shared subword-level information, which should
hopefully lead to improved word vector estimates.

This was done by fine-tuning training after ev-
ery epoch of normal training. During fine-tuning,
for every eligible cue word w ∈ Vw, a set of
ηp positive samples (Pw) and a set of ηn nega-
tive samples (Nw) was constructed. A vocabu-
lary word was considered eligible if it occurred
greater than T times in the training corpus. This
thresholding step ensured that rare words didn’t
disrupt word vector estimates. Positive samples
were words having the most similar vector rep-
resentations to a given cue word, based on co-
sine similarity. Negative samples were randomly
picked from the vocabulary.

Once these sets had been constructed, the fine-
tuning loss was calculated using the “output word
embedding vectors of the chosen words” in two
steps. The attract term tried to pull similar words
together and push different ones further apart. The
preserve term tried to keep the updated word vec-
tor close to its original value. Thus,

LA(w) =
∑

wp∈Pw

∑
wn∈Nw

max(δ + Vwout,w ·

Vwout,wn − Vwout,w · Vwout,wp , 0)

LP (w) = λ · ||Vwout,w − V̂wout,w||2

LAP =
∑

w∈Veligible

(LA(w) + LP (w))

dc 15
dwout 650
dwin 1100
f 7
{ki}fi=1 {1, 2, 3, 4, 5, 6, 7}

{di}fi=1

{50, 100, 150, 200, 200, 200,
200}

M
computed separately for each
training corpus

Dropout value 0.5
Learning rate 1.0
Learning rate
decay

0.5

Parameter init rand uniform [-0.05, 0.05]
Batch size 20
RNN sequence
length

35

Max grad
norm

5.0

Max epochs 15 or 30
δ 0.6
(ηn, ηp) (3, 3)
AP learning
rate

0.05

AP gradient
clip

2

λ 10−9

T 5

Table 1: Model and experimentation parameters

2.6 Optimization

SGD optimization algorithm was used for normal
training, while AdaGrad was used for fine-tuning.

2.7 Results

The authors obtained notable results on most of
the 50 languages. Their values for three Indian
languages, namely Hindi (Hi), Tamil (Ta) and
Kannada (Ka), are provided in table 2.

Lang. Baseline w/o AP w/ AP
Hi 426 326 299
Ta 6234 3496 2768
Ka 5310 2558 2265

Table 2: PPL values for three Indian languages
(baseline refers to standard LSTM network with
similar parameters, w/o AP refers to char-CNN-
LSTM model without fine-tuning)

3 Experiments

Since the authors had not released their code
by the time we started, we re-implemented their
model ourselves in Python3 using TensorFlow.
There were some parameters whose values had
been left unreported, as well as some details re-
garding the model that remained unclear. We
made assumptions regarding the same, which are
stated in table 3.

Detail Assumption
Number of units in
an LSTM cell

400

Number of itera-
tions during fine-
tuning

250

Manner of prepar-
ing batches

First treated all
tokens indepen-
dently; then made
sentence-wise
batches

Whether to include
start- and end-of-
word tokens

Experimented with
both

Table 3: Assumptions made during implementa-
tion

We initially started experimenting by consider-
ing all tokens (words) as independent units i.e. we
were concerned with the correct order only within
the window of 35 time steps — preservance of or-
der or LSTM state was not guaranteed outside this
window. This assumption had made implemen-
tation easier, but was fundamentally flawed. Our
LCE and LAP loss values were much higher after
30 epochs, as shown in figures 1 and 2.

Figure 1: Variation in CE loss with iterations for
independent token assumption

Figure 2: Variation in AP loss with iterations for
independent token assumption

3.1 Effect of sentence-wise batches and
start-/end-of-word tokens

In order to incorporate this, we had to add a
<pad> token to the word vocabulary and start-
(<w>) and end- (</w>) of-word tokens to the
character vocabulary. Every word was prepended
with <w> and appended with </w> before being
sent as input to the char-CNN. Each of the 20
channels in a batch was reserved for a particular
sentence, and was allotted to the next one only
when the </s> token for the former had been
encountered. If a sentence terminated before 35
timesteps, it was padded with the <pad> token
on both the input and output side. Whenever a
channel was switched between sentences, the cor-
responding LSTM states were flushed. This was
done so that information of the previous sentence
did not affect the predictions for the current one.
We were able to push the loss values down, as
shown in figures 3 and 4.

Figure 3: Variation in CE loss with iterations for
sentence-wise batches

Figure 4: Variation in AP loss with iterations for
sentence-wise batches

3.2 Effect of fine-tuning
In order to understand and verify the effect of fine-
tuning, we tracked the CE loss values across itera-
tions (for the independent token assumption) both
with and without including AP loss, and noticed
that fine-tuning did help the model to learn better
(see figure 5 and 6).

Figure 5: Variation in CE loss with iterations with
fine-tuning

Figure 6: Variation in CE loss with iterations with-
out fine-tuning

4 Suggestions and Future Work

Upon detailed analysis of Gerz et al’s model, we
identified certain aspects that could be improved
upon to possibly get better performance. They are
mentioned below:

• Word vectors were generated using only lo-
cal information (character sequence within a
word) and local transformations

• The pooling operation (max-over-time) com-
pletely ignored the activations/responses at
non-maximal time instances, due to which
important information was possibly lost

• It is possible that the information captured by
the two word embeddings (input and output)
is redundant

We now suggest alternative variants that try to
address some of these issues, and intuitively ex-
plain how. Their implementation and analysis is
left for future work.

4.1 Introduce attended-pooling

It is trivial to realize that max-over-time pool-
ing leads to loss of information captured in non-
maximal time instances. Instead of using the cur-
rent one-hot “attention” scheme (with the maximal
time instance getting full attention), we could use
a more distributed one. The amount of empha-
sis given to different character clusters depends on
both the tokens encountered in close vicinity, as
well as the overall global context. Both these fac-
tors can be incorporated by introducing an atten-
tion window that uses the generated word vectors
of last k words (local context), and LSTM states of
the previous timestep (global context) to produce
an attention distribution over M columns for each
kernel size, {ki}fi=1 (see figure 7).

et =W1·C1,t−1+W2·C2,t−1+

k∑
i=1

WviVwin,wt−k
+bW

êt,j =
exp(et,j)∑M
i=1 exp(et,i)

ywt =
M∑
i=1

êt,i · Vc,wt,i

Here Ck,t is the state of kth LSTM layer after tth

timestep, Wα are weights, Vc and Vwin are char-
acter and input word embeddings and wt,i is the
ith character of the input word at time t. The final
word vector is obtained by concatenating the ywt’s
of all kernel sizes columnwise.

4.2 Allow external factors to affect
transformations

The highway network of the current implemen-
tation uses only local information (i.e. bounded
within character clusters of the word) for produc-
ing linear transformations (scaling and translation)
in the generated word vector. Ideally, this trans-
formation should be affected by external context
too, which is not possible in the present model.
Replacing the highway network by a combination
window can possible solve this — it takes as in-
put the final word vector, ywt , as well as history of
last k word vectors and LSTM states of previous
timestep, to generate a scaling and offset vector.

st = Q1·C1,t−1+Q2·C2,t−1+
k∑
i=1

QviVwin,wt−k
+bQ

Figure 7: Introducing an attention scheme as a pooling window

Figure 8: Replacing highway network with a combination window

bt = R1·C1,t−1+R2·C2,t−1+

k∑
i=1

RviVwin,wt−k
+bR

ŷwt = st · ywt + bt

4.3 Ensure orthogonality of word
embeddings

As mentioned earlier, there is a possibility that the
information captured by the two word embeddings
is quite similar, leading to redundancy. This can be
avoided if we ensure that these embeddings remain
orthogonal to each other i.e. the inner product of
corresponding word vectors is as low as possible.
An easy way to ensure this is adding another term
to the total loss

Lortho(Vwin ,Vwout) =
∑
w∈V
VTwin,w · Vwout,w

Minimization of this loss function is essentially
minimizing the inner product of the two vector
representations for each word — this is same as
moving towards orthogonality of vector spaces,
since for orthogonal vectors p and q, pT · q = 0.

4.4 Construct shared embeddings

The total count of distinct ngrams for a given cor-
pus is very large. However, their frequency distri-
bution is highly skewed, with only a few of these
ngrams occurring in significant amounts (see fig-
ures 9 and 10).

Figure 9: Frequency distribution of bigrams for
Hi language

Since the character sequence constituting these
frequent ngrams is so common, we could treat
them as independent tokens and assign a vector
representation for the cluster as a whole instead of
constructing it from constituent characters. This is
beneficial because those characters possess more
information and meaning as a group than they
do so individually. This gives rise to the notion

Figure 10: Frequency distribution of trigrams for
Hi language

of shared embeddings — a vector space consist-
ing of representations of words and such frequent
ngrams.

References
[1] Language Modeling for Morphologically Rich Lan-

guages: Character-Aware Modeling for Word-Level
Prediction, Daniela Gerz, Ivan Vuli, Edoardo Ponti,
Jason Naradowsky, Roi Reichart and Anna Korho-
nen, TACL 2018.

[2] Character-Aware Neural Language Models, Yoon
Kim, Yacine Jernite, David A Sontag, Alexander M.
Rush, AAAI 2016.

