
CS490 R&D PROJECT REPORT 1

Alternate Loss Functions for Neural Language
Modeling

Yash Shah, Second Year Undergraduate, 160050002
Under the guidance of Prof. Preethi Jyothi, IIT Bombay

Abstract—The main objective of this R&D project was to use
n-gram statistics to help a LSTM network learn the task of
language modeling better. The inspiration behind this project
was loosely based on transfer learning, that was introduced by
G. Hinton in his paper “Distilling the Knowledge in a Neural
Network”. We aimed to train a LSTM network (student) under
the supervision of a statistical n-gram language model (teacher),
so that it learned from two sources — we built the n-gram
model on the training dataset using Kneser-Ney discounting and
interpolation, and used its predictive probability distribution
as a soft target for training the LSTM network at each stage
along with the standard one-hot encoded targets. We tried new
loss functions, and their combinations with existing ones, to
impart this n-gram information to the LSTM network. Several
other architectures along the same line were tried, and we were
able to beat the baselines with several of them. Expanding the
training dataset from PTB to Wikitext2 forced us to optimize
our code further, since each minibatch took an infeasible amount
of time to run. We employed various running-time and storage-
space optimization techniques to cross this bottleneck, with some
success. This report talks in detail about the reading process,
loss functions and model architectures employed, optimization
techniques tried and results obtained over the duration of this
R&D project.

Index Terms—loss functions, language modeling, LSTMs

I. READING AND FOUNDATION

A. Research Papers

OVER the duration of this R&D project, I read the fol-
lowing research papers in the same order as they appear

in the list. Each one imparted me knowledge about a different
aspect of language modeling (neural language modeling in
particular), which greatly helped me in my endeavors.

• “An Empirical Study of Smoothing Techniques for Lan-
guage Modeling”, S. Chen and J. Goodman, 1998

• “Recurrent Neural Network based Language Model”,
Mikolov et al, 2010

• “Recurrent Neural Network Regularization”, Zaremba et
al, 2015

• “Regularizing and Optimizing LSTM Language Models”,
Merity et al, 2017

• “On the state-of-the-art evaluation in Neural Language
Models”, Melis et al, 2017

• “Distilling the Knowledge in a Neural Network”, G.
Hinton, 2015

• “Breaking the Softmax Bottleneck”, Yang et al, 2017
• “Neural Lattice Language Models”, J. Buckman, G. Neu-

big, 2017

B. Codebase

We used the codebase already built by Kalpesh Krishna
when he was working on the same project. It was pre-
dominantly written in python2 using Tensorflow library
with a C++ module for storing n-gram language model in
trie data structure. It also had scripts for plotting results,
interpolating the results of two models, and mining training
data from the internet.

We built upon this existing framework by adding new model
architectures, optimizing the C++ code to make it feasible
for large datasets, adding scripts to map non-ASCII tokens
to rare tokens and also new python2 code for efficiently
storing dense n-gram probability distribution tensors on disk
with minimal loss in information.

II. DISCUSSION

A. “Regularizing and Optimizing LSTM Language Models”,
Merity et al, 2017

Recurrent Neural Networks and their variations are very
likely to overfit the training data. This is due to the large
network formed by unfolding each cell of the RNN, and
relatively small number of parameters (since they are shared
over each time step) and training data. Thus, the perplexities
obtained on the test data are often quite larger than expected.
Several attempts have been made to minimize this problem
using varied regularization techniques. This paper tackles this
issue by proposing a model that combines several of such
existing methods.

Merity et al’s model is a modification of the standard LSTM
in which DropConnect is applied to the hidden weights in the
recurrent connections of the LSTM for regularization. The
dropout mask for each weight is preserved and the same mask
is used across all time steps, thereby adding negligible com-
putation overhead. Apart from this, several other techniques
have been incorporated :
• Variational dropout: The same dropout mask is used

for a particular recurrent connection in both the forward
and backward pass for all time steps. Each input of a
mini-batch has a separate dropout mask, which ensures
that the regularizing effect due to it isn’t identical across
different inputs.

• Embedding dropout: Dropout with dropout probability
pe is applied to word embedding vectors, which results
in new word vectors which are identically zero for the
dropped words. The remaining word vectors are scaled
by 1

1−pe as compensation.

CS490 R&D PROJECT REPORT 2

• AR and TAR: AR (Activation Regularization) and TAR
(Temporal Activation Regularization) are modifications
of L2 regularization, wherein the standard technique is
applied to dropped output activations and dropped change
in output activations respectively. Mathematically, the
additional terms in the cost function J are (here α and β
are scaling constants and D is the dropout mask)

JAR = αL2

(
Dtl � htl

)
(1)

JTAR = βL2

(
Dtl �

(
htl − ht−1l

))
(2)

• Weight tying: In this method, the parameters for word
embeddings and the final output layer are shared.

• Variable backpropagation steps: A random number
of BPTT steps are taken instead of a fixed number,
whose mean is very close to the original fixed value
(s). The BPTT step-size (x) is drawn from the following
distribution (here N is the Gaussian distribution, p is a
number close to 0.95 and σ2 is the desired variance) :

x ∼ p · N
(
s, σ2

)
+ (1− p) · N

(s
2
, σ2
)

(3)

• Independent sizes of word embeddings and hidden
layer: The sizes of the hidden layer and word embeddings
are kept independent of each other.

The paper also introduces a new optimization algorithm,
namely Non-monotonically Triggered Averaged Stochastic
Gradient Descent or NT-ASGD, which can be described as
follows :

Algorithm 1: Non-monotonically Triggered ASGD (NT-
ASGD)

Input: Initial point w0, learning rate γ, logging interval
L, non-monotone interval n

Output: parameter(s) that minimize the objective
function f

Initialize k ← 0, t← 0, T ← 0, logs← []
while stopping criterion not met do

w ← w − γ∇wf
if mod(k, L) = 0 and T = 0 then

v ← perplexity(w)
if t > n and v > minl∈{t−n,··· ,t} logs[l] then

Set T ← k
end
Append v to logs
t← t+ 1

end
end
return

∑k
i=T wi

k−T+1

They also combined their AWD-LSTM (ASGD Weight
Dropped LSTM) with a neural cache model to obtain further
reduction in perplexities. A neural cache model stores previous
states in memory, and predicts the output obtained by a convex
combination of the output using stored states and the AWD-
LSTM.

Network description: Merity et al’s model used a 3-layer
weight dropped LSTM with dropout probability 0.5 for PTB
corpus and 0.65 for WikiText-2, combined with several of the
above regularization techniques. The different hyperparame-
ters (as referred to in the discussion above) are as follows -
hidden layer size (H) = 1150, embedding size (D) = 400,
number of epochs = 750, L = 1, n = 5, learning rate = 30,
gradients clipped at 0.25, p = 0.95, s = 70, σ2 = 5, α = 2,
β = 1, dropout probabilities for input, hidden outputs, final
output and embeddings as 0.4, 0.3, 0.4 and 0.1 respectively.
Mini-batch size of 40 was used for PTB and 80 for WT-2.
Word embedding weights were initialized from U [−0.1, 0.1]

and all other hidden weights from U
[
− 1√

1150
, 1√

1150

]
.

Result highlights: The authors obtained the following
results for their model
• 3-layer AWD-LSTM with weight tying attained 57.3 PPL

on PTB
• 3-layer AWD-LSTM with weight tying and a continuous

cache pointer attained 52.8 PPL on PTB

III. EXPERIMENTS

A. Model architecture

The base model was a 2 layer LSTM network with size
650 and was unrolled across 35 timesteps with gradients
clipped at 5.0. We had applied dropout masks to the input,
final output and tensors being passed between LSTM cells
(across both layers and timesteps) with dropout probabilities
0.5, 0.5, 0.5 and 0 respectively.

The statistical model was of order 3 and used Kneser-Ney
discounting and interpolation for all n-grams We used this
architecture to try1 the following variants of loss functions2

1) Introducing temperature in output softmax layer: The
standard softmax function, as applied to logits ô ∈ RD×1),
can be expressed as

oi = softmax(ôi) =
exp(ôi)∑D
j=1 exp(ôj)

(4)

This operation results in a vector whose elements sum to
1 (
∑D
i=1 oi = 1), and hence it is often used to model a

probability distribution. However, it is often observed that a
relatively large value in one dimension would concentrate the
probability mass around itself leaving other dimensions with
negligible value.

Thus, in order to smoothen the resulting probability dis-
tribution, the softmax operation is modified by introducing a
temperature term (T) as follows

oi = softmax(ôi) =
exp

(
ôi
T

)∑D
j=1 exp

(
ôj
T

) (5)

Using higher values of T will generate a more even probability
distribution, thereby enabling all dimensions to learn more

1In all experiments, we used stochastic gradient descent optimization, with
initial learning rate 1.0 that decayed by 0.8 every epoch, after 13 epochs. We
trained with a batch size of 20 for 50 epochs.

2See APPENDIX for gradient calculations

CS490 R&D PROJECT REPORT 3

uniformly. We tried using values 3, 5, 10 for T in the softmax
operation of the output layer, guided by the intuition that
such a step will help to pass n-gram information from the
loss function (in the form of gradients) in a better manner.

2) Using L1 + L2 loss: L1 loss is just another name
for cross-entropy loss. Thus, for a given input sequence
x = {xt}Tt=1, predicted distribution o = {ot}Tt=1 and expected
output y = {yt}Tt=1 (here xt’s are the word-vectors of ‘input’
word, yt’s are one-hot encoded vectors for the ‘next’ word,
and ot’s are the softmax outputs), it is defined as

L1(x) =

T∑
t=1

∑
v∈V
−yv,tlog(ov,t) (6)

The L2 loss is similar to L1 loss except that here the target
distribution is not the one-hot encoded vector of the next word,
but instead the predictive probability distribution of the next
word over the entire vocabulary, generated by the statistical
n-gram model. If we denote the target distribution by PNG
and the model’s prediction by P, then L2 loss is defined as

L2(x) =

T∑
t=1

−PNG,t · log(Pt) (7)

PNG,t · log(Pt) =
∑
v∈V

PNG,t(v|ct)log(Pt(v|ct)) (8)

where ct denotes the context encountered till timestep t. Thus,
L2 loss is the cross-entropy between PNG and P distributions.
A different way of looking at L2 loss is that it takes some of
the ‘penalty’ for incorrectly predicting the expected word, and
distributes it over all other words in the vocabulary — thereby
ensuring that the model learns not to predict incorrect words
too. We used a linear combination of L2 and L1 loss as our
loss function at the output layer. If the contribution of L1 is
denoted by η

Ltotal(x) = η · L1(x) + (1− η) · L2(x) (9)

3) Using L1 +L3 loss: L3 loss, or Conflict-Averse loss is
the cross-entropy between PNG and P distributions, but in the
reverse order as L2 loss. Thus,

L3(x) =

T∑
t=1

−Pt · log(PNG,t) (10)

L3 loss has little meaning of its own, but in combination
with L1 or L2 loss, it serves as a ‘check’ to keep predicted
probabilities of words not expected at that timestep (accord-
ing to the n-gram model) low, by penalizing P(v|ct) with
−log(PNG(v|ct)). Thus, any ‘conflict’ between the neural and
statistical would shoot the L3 loss up, thereby teaching the
model to ‘averse’ such a prediction.

We tried a linear combination of L1 and L3 losses, with the
weight of L1 loss as η′, at the output layer

Ltotal(x) = η′ · L1(x) + (1− η′) · L3(x) (11)

Since L3 loss is not useful by itself, we would expect the
value of η′ to be significantly smaller than η if both models
were to give similar results.

4) Introducing intermediate L2 loss: Instead of introduc-
ing the L2 loss at the output layer, we tried applying it
independently to intermediate layers. This way, the outer layer
should learn from the ‘strict’ one-hot distribution, whereas the
intermediate layers should learn predominantly from the n-
gram distribution.

If the activations of intermediate layers are hti, with i ∈
1, 2 . . . n − 1 and those of the output layer are htn, the final
loss would be3

Ltotal(x) = ηnL1(htn) +

n−1∑
i=1

ηiL2(Wi · hti + bi) (12)

where
n∑
i=1

ηi = 1 (13)

5) Introducing intermediate L3 loss: Identical to previous
setup, except we use L3 loss instead of L2. The total loss thus
becomes3

Ltotal(x) = η′nL1(htn) +

n−1∑
i=1

η′iL3(W′i · hti + b′i) (14)

where
n∑
i=1

η′i = 1 (15)

B. Running time optimization

The codebase is predominantly written in python2, with
a C++ module for creating and handling the backoff n-gram
language model. Testing the forementioned architectures on
the PTB dataset using the original codebase took around 0.8
seconds per minibatch on voxel10, and thus the model took
roughly 8 hrs to train. However, on expanding the dataset from
PTB to Wikitext2, the time per minibatch shot up to 3 seconds
and the overall training time to around a week. This was highly
undesirable since hyperparameter tuning would itself gobble
up a lot of time.

TABLE I
COMPARISION OF PTB AND WIKITEXT2 DATASETS

Parameter PTB Wikitext2
Train Valid Test Train Valid Test

Tokens 887,521 70,390 78,669 2,088,628 217,646 245,569
Vocabulary 10,000 33,278

OoV 4.8% 2.6%

After analyzing the time taken by each module, we identi-
fied the bottleneck to be the generation of n-gram probability
distribution for every timestep, given the context. Shifting to
Wikitext2 had increased both the vocabulary size (leading to
larger tensors) as well as the number of minibatches (due to
more training tokens), thereby rendering the current codebase
infeasible against large datasets.

3Note that the representation of L1, L2 and L2 losses are different than
before. Here, they are used to indicate the probability distribution which will
be used alongside the one-hot or n-gram distribution respectively.

CS490 R&D PROJECT REPORT 4

1) C++ SWIG wrappers: We had used the SRILM toolkit
for generating the n-gram ARPA file, followed by a C++ script
(which was integrated with python2 via the SWIG interface)
for storing the language model along with backoff weights
using trie data structure (it was the best trade-off between
speed and memory requirement).

The n-gram probability distribution over the vocabulary
had to be generated in batches of dimension (batch size,
timesteps, vocab size) (that is, (20, 35, 10000) for PTB and
(20, 35, 33278) for Wikitext2). The original code iterated over
batch size and timesteps using for loops in the python2
code itself, calling the C++ module only for filling the
corresponding distribution vector of vocab size size. We
shifted these for loops from python2 to the C++ module to
get an inherent speedup due to the faster execution time for
C++.

2) Multithreading: Although shifting for loops from
python2 to C++ did have some benefit, it was not suffi-
cient. Further analysis of the manner in which the probability
distribution was generated revealed that each of the batch size
* timesteps iterations could be run in parallel, since they were
completely independent of each other — a separate context
vector had been used for each iteration in the earlier code,
and so each of the batch size * timesteps distribution vectors
of vocab size size could be filled independently.

We used the pthread library and modified the C++ code so
that the task was divided amongst a constant number of threads
(8 for voxel10 and 48 for dhvani) which ran concurrently.
We stuck with the notion of “one thread per core” aiming to
maximally use the computational power of each server.

However, we weren’t able to achieve the expected speedup
since in Linux, threads are assigned a core by the scheduler
depending on the CPU load, and we have little control
over the same. There are utilities such as taskset that allow
the user to manually assign a processor core to a process
(identified by its PID), but since all threads have the same
PID in our case, it was of no use to us. Thus, introducing
multithreading improved our running time for generating
n-gram probability distribution from around 2.8 seconds
to 0.8 seconds (on dhvani server) and 1.3 seconds (on
voxel10) against the expected (and desired) factor-10
improvement.

3) Multiprocessing: We believed that we could improve the
running time further if we were able to assign one instance
(out of the batch size * timesteps instances) to one core at a
time. We therefore decided to try multiprocessing instead of
multithreading, since the former actually uses separate cores
for different processes. Since the OpenMP library for C++ had
a steep learning curve and was incompatible with SWIG, we
decided to shift the C++ module back to python and use its
multiprocessing library instead.

We spawned processes equal in number to the cpu count of
the server. Each process was assigned one of the batch size
* timesteps distribution-generation instances as soon as it
became free, and this was done till the entire tensor of
dimension (batch size, timesteps, vocab size) was filled.

However, this didn’t work well since the overhead of
allocating a separate memory space and copying the large
tensors to it shadowed the improvement in computation time,
if any. We even tried sharing the memory of parent process
with its children to reduce the “copying” overhead, but in
vain. The execution time for the task increased from 2.8
seconds to around 7 seconds instead.

4) Inference: So far, we found the best option to be the
multithreaded C++ SWIG code which took roughly 1.1 sec-
onds overall on dhvani, and 1.5 seconds on voxel10. This
improvement was still infeasible, since the model took around
3 days to train for Wikitext2 dataset. We therefore decided
to try optimizing storage-space instead of running-time, since
the n-gram distributions could be accessed quickly (∼ 0.05
seconds) multiple times once they have been generated and
saved on disk.

C. Storage space optimization

Generating the n-gram distributions for each minibatch
beforehand and storing them on disk does seem to be the
perfect solution, except for one aspect — the disk space
required for the same (without any optimization) is close to
600 GB.

Space required = space required for 1 batch * no. of batches
= 187 * 2983 MB = 557.821 GB

The space requirements are huge since we need to store
each and every element of the n-gram distribution tensor.
This is because for the current implementation, these tensors
are dense i.e. the fraction of zero entries is very small. We
knew that sparse matrices can be efficiently stored on disk
— we thus decided to sparsify the n-gram tensors, and at the
same time ensure that such a step didn’t alter the information
stored within them.

Thresholding n-gram distribution: In this method, we
decide on a threshold value (θ) and replace all probabilities
less than it by 0 in the given tensor x. This ‘sparsifies’
the tensor thereby making it easier to store. We denote the
fraction of zero entries in a tensor by its sparsity index, α.
Thresholding does pose a problem — we need to ensure that
the probability mass of non-zero values is still close to 1,
otherwise a significant amount of n-gram information has been
lost. We denote the margin by which the new total probability
mass may be off from 1 by allowance, or δ.

The sparsity index and loss incurred (∆) for a given
threshold θ and allowance δ can be expressed as

S.I.θ(x) = αθ(x) =

∑V
i=1 1{xi<θ}

V
(16)

∆δ,θ(x) = max

{
0, 1−

(
V∑
i=1

xi · 1{xi≥θ}

)
− δ

}
(17)

where 1β is the indicator function, which evaluates to 1 if β
is true, and 0 otherwise.

CS490 R&D PROJECT REPORT 5

Since increasing the value of θ would increase αθ for any
given x, we need to solve the following constraint problem for
the chosen value of δ

arg max
θ

min
θ

∆δ,θ(x) (18)

That is, we need to find the maximum value of θ which
minimizes the loss ∆, given x and δ.

IV. RESULTS

A. Penn Treebank Dataset

We used the positive results obtained on this relatively
smaller dataset to improve performance over a larger dataset
such as WikiText-2.

Temperature variation: In order to confirm whether in-
creasing temperature had any effect on the model’s perfor-
mance, we compared the validation perplexities of the base
model with T = 1, 3, 5, 10. We inferred that increasing
temperature had little effect on performance — it degraded
performance instead.

TABLE II
VALIDATION PERPLEXITIES FOR DIFFERENT TEMPERATURES

Loss function T = 1 T = 3 T = 5 T = 10
L1 78.4071 81.4264 83.0821 91.7688

Using L1 +L2 loss: The following results were found, and
seemed promising.

TABLE III
PERFORMANCE WITH DIFFERENT η VALUES

Loss function η = 1 η = 0.5 η = 0
L1 + L2 78.4071 75.7233 138.2089

Using L1 + L3 loss: Introducing L3 loss didn’t seem
to benefit, since the perplexities increased rapidly as the
contribution of L3 loss was increased. This discouraged us
to try L3 loss for intermediate layers.

TABLE IV
PERFORMANCE WITH DIFFERENT η′ VALUES

Loss function η′ = 1 η′ = 0.99 η′ = 0.5
L1 + L3 78.4071 82.1446 221.3349

With L2 loss seeming promising, we shifted to a larger
dataset (WikiText-2) for further experiments.

B. Wikitext2 Dataset

For this dataset, we dropped the temperature experiments
for the time being, since they hadn’t provided satisfactory
results with PTB. The baseline perplexities are mentioned in
table IV-B.

We were able to run only a few experiments on this dataset
owing to its vocabulary and number of tokens, both of which
made the task of generating n-gram distribution quite slow.

TABLE V
BASELINE PPL FOR WIKITEXT-2

Model Validation perplexity
Pure L1 97.8665
Pure L2 219.8655
n-gram 265.7427

TABLE VI
USING L1 + L2 FOR WIKITEXT-2

η/1− η Validation perplexity
0.7/0.3 96.7805

0.75/0.25 95.5355
0.8/0.2 92.7879

0.85/0.15 95.9744
0.9/0.1 93.3825

0.95/0.05 95.8202
0.99/0.01 99.4833

TABLE VII
USING L1 + L3 FOR WIKITEXT-2

η′/1− η′ Validation perplexity
0.8/0.2 124.8758
0.9/0.1 107.13

0.99/0.01 99.7766

V. CONCLUSION

We observed that combining L2 with L1 loss led to
improvement in perplexity. Introducing loss functions, most
probably L2, for intermediate layers might be beneficial.
Increasing temperature did not better the base model when
L1 loss was used, but improvement might be possible for
other loss functions. As of now, WikiText-2 (and other large
datasets) cannot be used for training our model since the n-
gram distribution generation takes an infeasible amount of time
to run. We will be looking for space-optimization techniques
for efficiently storing and accessing batch n-gram distributions
from disk.

APPENDIX A
GRADIENT CALCULATIONS FOR SOFTMAX FUNCTION

The temperature simply results in an extra factor of T as
below

∇ôiSj =
1

T
· Sj(δij − Si) (19)

APPENDIX B
GRADIENT CALCULATIONS FOR L2 LOSS

Since L2 loss is very similar to cross-entropy loss, the gra-
dient calculations are similar. Using the notation as introduced
earlier,

∇ôiL2(xt) =

V∑
j=1

−PNG(wj |ct)
P (wj |ct)

·

P (wj |ct)(δij − P (wi|ct))

(20)

=

V∑
j=1

−PNG(wj |ct) · (δij − P (wi|ct)) (21)

CS490 R&D PROJECT REPORT 6

APPENDIX C
GRADIENT CALCULATIONS FOR L3 LOSS

It is important to realize that L3 loss is merely a ‘scaled’
sum of the output’s values along all dimensions — with the
P(v|ct) term being scaled by −log(PNG(v|ct). Since the n-
gram distribution is independent of the model’s parameters, it
can be treated as a constant while computing gradients. Thus,
gradient calculation for L3 loss reduces to that of softmax
operation.

∇ôiL3(xt) =
V∑
j=1

−log(PNG(wj |ct)) · P (wj |ct)(δij − P (wi|ct))
(22)

∇ôiL3(xt) =
V∑
j=1

−log(PNG(wj |ct)) · ôj(δij − ôi)
(23)

ACKNOWLEDGMENT

I would like to sincerely thank Prof. Preethi Jyothi for
constantly guiding and supporting me throughout the duration
of this R&D project, and for providing me the opportunity and
resources for the same.

