
SPSIM: SuperScalar Processor SIMulater

CS305 Project Report

Yash Shah (160050002), Naman Jain (160050025), Utkarsh Gupta (160050032),
Rupesh (160050042), Sharvik Mital (160050059)

November 2018

Abstract

The aim of this project is to study the different techniques that are used to make the micropro-
cessors execute programs fast, and test them out in practice by building a software simulator since
none of the techniques give any useful theoretical bounds whatsoever. In this pursuit we first need
to understand how we can make a program execute faster. Surely, we could do so by improving
the algorithm, but what about problems for which there is no efficient algorithm known to exist
(NP-hard problems)? Clearly, the only way to run a given program faster in such a scenario is to
make changes in the mechanisms and policies of the system on which it is being executed. Where
do the possibilities of optimization lie? To answer this question, we need to ask ourselves what the
bottleneck for execution of the program is at the hardware or architectural level. There has been
a lot of effort put into solving this question, and we already know a few major optimizations like
pipelining and forwarding which have been implemented in the architecture of microprocessors to
make them execute programs faster. In this project, we look at optimizations that came later and
develop a superscalar processor simulator which makes use of branch prediction techniques and
out-of-order execution (or dynamic scheduling) to increase the throughput of the processor.

1 Problem Statement

To help us focus on the essence of the problem and not on all the system level details, we model a
program as a sequence of instructions that are executed “sequentially” by the microprocessor. Note
that the sequential execution of instructions is the semantic and not the architectural requirement; we
can execute instructions out of order as long as we maintain the correct semantics of the program.

1.1 Possible Directions

If we think about the bottleneck of program execution, we can come up with atleast the following
three solutions:

1. Reduce instruction latency : Reducing individual instruction latency reduces the execution
time of the program since each individual instruction can be completed sooner.

2. Using more than one processors: Using more than one processor to execute the program
allows us to exploit parallelism in the program (if any), and can thus result in faster execution
of the program.

1

3. Instruction level parallelism : We can also execute a program faster if we can initiate and
execute more than one instruction per clock cycle; this is referred to as instruction level paral-
lelism or superscalar processing in the literature. This approach would require us to use extra
hardware to execute multiple instructions simultaneously in the same stage of the pipeline in a
clock cycle.

We will be focusing on the third approach in our project.

2 Superscalar Processing

Superscalar processing allows us to initiate more than one instructions simultaneously and execute
them independently. We would like to point out the difference between superscalar processing of
instructions and pipelining instructions. Pipelining allows execution of multiple instructions in a clock
cycle but it requires them to be in different stages — superscalar processing, on the other hand,
doesn’t require so. Further, we cannot initiate multiple instructions in a pipeline, while we can do so
in superscalar processing. This is made possible through addition of extra hardware.

We would ideally expect that if we are initiating two instructions per clock cycle, then our program
execution would take half the number of clock cycles it was taking before. However, this is not always
possible as discussed below:

2.1 Challenges in Superscalar Processing

Superscalar processing requires us to execute more than one instruction per clock cycle. But this is
not as simple as it sounds, because more often than not those two consecutive instructions have some
dependency between them i.e. there is often a hazard between two consecutive instructions which
prevents them from being executing simultaneously. Thus, we need to detect and resolve such data
hazards if possible, otherwise we won’t be able to effectively utilize the extra hardware that we have
put in the processor for executing multiple instructions in a clock cycle.

Another major obstacle are the branch instructions, where we do not know at the IF stage which
instruction to fetch next. To minimize our losses in terms of clock cycles we use branch prediction
techniques and do speculative execution.

3 Resolving Hazards

There are three types of hazards between instructions — RAW (Read-After-Write), WAW (Write-
After-Write) and WAR (Write-After-Read). The manner in which they are handled is described
below:

3.1 Resolving WAR/WAW hazards

In literature, WAR and WAW hazards are not considered “true hazards” (unlike RAW hazards); in-
stead, they are considered “pseudo hazards”. This is because WAR and WAW hazards can always
be removed by use of register renaming and remapping. We explain this through an example.

Example 3.1 Consider the following assembly code snippet. Assume that there are 32 logical registers
in this ISA, and 64 physical registers in hardware.

2

1. mult $t3,$t2,$t1

2. add $t3,$t2,$t0

There is WAW hazard between the two instructions if both instructions write to the same physical
register, because in that case instruction 2 would have to wait for instruction 1 to write in order to
maintain the correct semantics of the program. However, if we do dynamic mapping of logical registers
with the physical registers for each instruction and store the mappings, then the second instruction
can write to a register as soon as it has the result. This is because it is now writing to a different
physical register, and the instruction that will read from $t3 will read from this physical register since
we have stored the mapping. Similarly, we can remove WAR hazards.

Thus through remapping of registers and appropriate state maintenance, we can remove WAR and
WAW hazards.

3.2 Resolving RAW hazards

RAW hazards can not be removed by use of register remapping and renaming. Instead of trying to
remove them, we try to utilize the inevitable stalls for executing other instructions by using dynamic
scheduling or out-of-order execution. If a stage comes where we have to execute an instruction that has
a RAW hazard with any of the ongoing instructions, instead of waiting we send such an instruction
for execution (instead of the former instruction) which doesn’t have a RAW hazard with the ongoing
instructions. Such an instruction might not exist, in which case there would be a stall in the pipeline.

4 Branch Prediction

We use dynamic branch prediction based on the computation history of the program to predict what
the next instruction fetched should be. For dynamic branch prediction, we use a two-bit branch
predictor and a table data structure which tells the simulator the predicted address the branch should
go to. The initial predicted jump address for all instructions is assumed to be the next instruction. If
we encounter a branch instruction for the first time, it is assumed to be in the STRONGLY NOT TAKEN

state (refer figure 1). Otherwise, we use some bits from the program counter of the branch instruction
to index into the table and retrieve state of the branch instruction and the predicted jump address.
On each successful prediction and misprediction we check and update the corresponding entry of the
branch instruction in the table, if necessary. Figure 1 is the transition diagram of the finite state
machine that represents the execution of our two-bit branch predictor.

Figure 1: 2-bit branch predictor used in SPSIM

3

5 Implementation Details

In this section we describe implementation level details of the simulator that we designed and imple-
mented. Accompanying code for the same can be found at https://github.com/ys1998/spsim.

5.1 Simplifying assumptions

Developing a general superscalar processor simulator which works for a large set of operations is a
difficult task — one which we are currently unable to accomplish due to the time constraint. However,
we have made certain simplifying assumptions that have made simulation of a subset of those operations
possible. We describe those assumptions here:

• We do not model the behaviour of cache in SPSIM, i.e. we assume 100% hit rate. This is because
it is not required for our objective and would have only complicated the implementation.

• We assume 32 bit instructions and follow the MIPS ISA as taught in class.

• For now, we consider a very limited set of instructions in SPSIM. We don’t consider floating
point operations or pseudo instructions. We consider only add, sub, mult, div, bne, beq,

sw, lw operations.

• Our ISA has mult instruction of the format mult rd,rs,rt instead of the MIPS format.

• Sizes of buffers are considered to be unlimited; this allows us not to worry about stalls in the
pipeline arising because of full buffers.

• We do not implement forwarding; we, however, do implement reading and writing of registers in
the same cycle — write in the first half and read in the second.

5.2 Challenges overcome

1. Flushing invalid instructions from the pipeline on branch misprediction

Whenever a branching instruction such as beq or bne is encountered, we predict the outcome
(i.e. whether the branch will be taken, and the target address if it is taken) in the DE stage itself
in order to avoid stalls. This prediction could be wrong sometimes, and the correct result is
known only when the condition is actually computed in ; in such a situation, we need to restore
the pipeline state to that before any speculation was made. Since register renaming is done only
for the destination register (rd), we store the previous mapping value (-1 if no mapping existed
earlier) for every instruction (as rd). We also maintain a unique identifier for each instruction
(ID), which grows monotonically in value with total number of instructions. Each category of
operations is handled in a slightly different manner:

• Integer operations : Each clocked entity has a flush() method that clears/removes all
instructions with ID greater than that of the branch instruction from all of its input, output
and internal buffers (buffers wherein ID is still unassigned are cleared completely). Removal
of instructions from the ActiveList is done a little more cautiously since we need to restore
the original mapping of rd correctly. For this, instructions are accessed in the decreasing
order of their IDs, mapping of rd is replaced by that of rd, the BusyBitTable is updated
and finally the instruction is removed.

4

• lw operation : This instruction is dealt in a similar manner as other integer operations.
This is because here too we need to restore the register mapping — we are not concerned
about the value in the register since all later reads are going to be invalidated anyways, and
the original value in memory remains unaffected.

• sw operation : These instructions were trickier to handle. This is because once they
complete execution, the original value in memory is overwritten and cannot be restored
if we realize later that the instruction was wrongly speculated. In order to prevent this
from happening, we issue sw instructions for execution only when there are no other active
branch instructions ahead of it in the ActiveList i.e. a store instruction is executed only
when it is certain that it will not be flushed. Thus, when a sw instruction is speculated
on encountering a branch, it will always be placed behind the branch instruction in the
ActiveList and will be executed only after the former safely graduates. Thus, flushing of sw
instructions simply involves scanning the AddressQueue and ActiveList and removing those
instructions whose ID is greater than that of the branch instruction.

2. Handling memory operations/instructions

Memory instructions have both an EXEC stage and a MEM stage and we have to deal with both
of these operations sequentially. Also, out of order execution in case of load & store instructions
is not trivial because instructions may have dependencies in memory addresses which have to
handled separately (since the address space can be huge, storing a busy bit per word is not a
solution). What makes matters worse is that these dependencies can only be found at run-time
since addresses have to be computed and these calculations might themselves have dependencies.
Note that dependencies till the EXEC stage are handled similarly to those of integer operations;
however, issuing to MEM stage is non-trivial.

The simplest solution one can obey is serializing memory accesses, but this defeats the purpose
of out-of-order execution. Instead, we optimize these operations in the following manner:

• If there are only load operations in the pipeline we forward them for address calculation
and memory fetch.

• If a store operation is present in the pipeline, and it is stalled due to an uncalculated memory
address, then no further sw or lw instruction with higher IDs’ can be issued to the MEM

unit.

• However, if the sw operation is stalled only due to a busy target register (i.e. the register
which will store the value at the memory address), we can bypass it and check for later
lw/sw operations that do not have a memory dependency with the former sw operations
(i.e. their target addresses are different). In case such an operation is found, it can be sent
to MEM stage.

3. Simulating multi-cycle execution stage instructions

We need to be careful while executing multi-cycle execution stage instructions such as mult.
This is because if we are not, then the latch storing the next instruction to be fed into the
execution stage will get overwritten without getting read by the ALU, resulting in the loss of
instructions and hence incorrect execution. To resolve this problem, we do the following: if a
latch has not been read in a clock cycle, all the clocked entities (refer figure 2) behind that latch
in the datapath get stalled, and thus the instruction in the latch is preserved. When it is picked
up by the ALU after it completes its execution, the clocked entities start functioning again.

5

4. Handling nested branch instructions

Nested branching can arise in many common scenarios and hence is of significant concern. It
might seem that speculating the results of two (or more) branch conditions and accordingly
updating the program flow might lead to incorrect execution. However, following the aforemen-
tioned approach of using IDs for flushing invalid instructions on misprediction leads to correct
results. Although speculation might happen in either direction (increasing or decreasing value of
the program counter, PC), restoring the original state of registers simply involves back-tracking
rd’s mapping in decreasing order of IDs which is irrespective of branch prediction.

5. Determining program termination

We determine termination of the program when the ActiveList (refer figure 2) becomes empty.
This works because the ActiveList stores all active instructions, and when it becomes empty it
indicates that all the instructions have been executed and have retired/graduated.

5.3 Pipelining in SPSIM

In the current implementation, each instruction passes through a subset of the following seven stages:

1. IF or Instruction Fetch - instructions fetched from I-Cache

2. DE or Decode - instructions decoded; register mapping and renaming

3. RF1 or Register Fetch, substage 1 - operand registers acquired; out-of-order scheduling done

4. EXEC or Execution - operation performed (latencies can be > 1)

5. RF2 or Register Fetch, substage 2 - source/destination registers acquired for lw/sw instruc-
tions respectively; computed memory address also fetched from ALU3

6. MEM or Memory - reads/writes from/to D-Cache performed

7. WB or Write-Back - result of operation written to destination register; instruction graduation

Integer arithmetic instructions use the IF, DE, RF1, EXEC and WB stages. Note that some operations
such as mult and div have a multi-cycle EXEC stage.

Load Store instructions use IF, DE, RF1, EXEC, RF2, MEM and WB stages. They are added in Ad-
dressQueue in DE stage. Address is calculated in EXEC stage and instruction is sent to MEM stage later
according to the logic mentioned in Section 5.2.

For branch instructions such as beq and bne, prediction is performed in the DE stage and hence
the speculated instructions are fetched after this stage. The condition is actually evaluated only in the
EXEC stage. In case of misprediction, the correct instructions will start executing only after the EXEC

stage has completed. Thus, a branch instruction also passes through IF, DE, RF1, EXEC and WB stages.

5.4 SPSIM Logical View

Each clocked hardware component is modelled using an appropriate derived class of the more abstract
ClockedEntity class. Each of these entities has a tick(), tock() and flush() method, which are
used to perform necessary actions during the events of a rising clock edge, falling clock edge and
flushing of invalid instructions respectively. The various clocked entities used are as follows:

1. Fetcher - It fetches two instructions every cycle using the current value of program counter
from the I-Cache and pushes them to an intermediate buffer between itself and the decoder. It
responds to flushing by correcting the program counter value to the one before speculation.

6

Figure 2: SPSIM Datapath

2. Decoder - It retrieves two instructions every cycle from the buffer and decodes them. Decoding in-
volves logical-to-physical register mapping and renaming using FreeList and RegisterMapping,
and also updating the BusyBitTable for handling dependencies. After this, instructions are
pushed either to the IntegerQueue or the AddressQueue depending on their type (arithmetic /
branching or load/store respectively).

3. Issuer - It is responsible for out-of-order issuing of instructions to the ALUs. In every cycle, it
issues one instruction per ALU (if it is free) by checking whether operands for that instruction
are ’available’. Each ALU can handle only a subset of possible operations, and the Issuer ensures
that each instruction is passed to the input latch of the correct ALU.

4. ALU1 - It handles operations such as add, sub, bne, and beq with higher priority towards branching
instructions. It reads from an input latch, and writes to an output latch. It is stalled whenever
either of them isn’t free (i.e. there is no instruction to read from input latch or the previous
output has still not been read from the output latch).

5. ALU2 - It functions similar to ALU1, but handles mult, div, add and sub operations with higher
preference towards mult and div.

6. ALU3 - It functions similar to ALU1 & ALU2, but handles only add operations for computing the
memory addresses for lw & sw instructions.

7. MEM - It is used by lw and sw instructions to communicate with the memory i.e. perform reads
from and writes to specified addresses. Note that the target address needs to be computed

7

beforehand and fed to this unit.

8. Writer - It reads the outputs from all three latches (i.e. the output latches of ALU1, ALU2 and
MEM) and performs writes to the corresponding destination registers. It also graduates completed
instructions from the ActiveList.

9. Flusher - In case of branch misprediction, it flushes all invalid instructions from the pipeline
and restores the original state by updating the program counter and reverting back altered
logical-to-physical register mappings.

Apart from these clocked entities, several static entities were also used, which are briefly described
below:

1. ICache, DCache - simulate the instruction and data caches respectively

2. Buffer - used for modelling intermediate and internal storage units between/within clocked
entities

3. BusyBitTable - a per-physical-register table indicating whether that register is busy or not (i.e.
whether it is in the process of being written to or not)

4. RegisterMapping - stores the most recent physical register that is mapped to a given logical one

5. FreeList - maintains a constantly updated list of physical registers that are free (i.e. they don’t
store any valuable information, and hence can be written to)

6. ActiveList - list of all instructions active in the pipeline; instructions are removed once they
graduate

7. IntegerRegisterFile - the group of physical registers

8. IntegerQueue - stores instructions corresponding to integer operations

9. AddressQueue - stores instructions corresponding to memory operations

10. Latch - temporarily holds a value and prevents writes until the previous value has been read

11. BranchPredict, BranchPredictAddr - buffers used for storing auxiliary information for branch
prediction i.e. current state in the prediction FSM (see figure 1), and predicted address for a
given program counter respectively.

The connections between these static and clocked components are modelled using pointers. When
a component is instantiated, it is provided with the pointers to those entities with which it is connected
— either for reading input or writing/pushing output.

6 Examples

In this section we present some code snippets and the corresponding output of the simulator, and point
out the salient features of our implementation.

Ex 1: Demonstrating out-of-order execution, hazard resolution and multi-cycle execution
In figure 3, we have the following hazards:

1. WAW hazard between instruction 1 and instruction 2. Since we are resolving WAW hazards
using register remapping, instruction 2 doesn’t have to wait for instruction 1 to complete exe-
cution. It is worth pointing out that multiple cycles were saved (not just 1) and if the program

8

Figure 3: Example 1

were only two instructions long, the effective time of execution would be just the time to execute
the first instruction.

2. RAW hazard between instructions 2 and 3 & between instructions 3 and 4. Our strategy to
deal with RAW hazards was to execute instructions out-of-order, and as can be seen in the figure,
instruction 5 enters EXEC stage before instruction 4 and at the same time as instruction 3.

3. Note the multi-cycle EXEC stage of mult instruction.

Ex 2: Demonstrating branch prediction and branching
In figure 4, we observe the execution of a for loop through bne statements in the following phases:

Figure 4: Example 2

1. The first instance of bne is predicted as not taken (which is the initial branch prediction state)
and this misprediction results in a penalty of 4 cycles due to the final, correct condition evaluation
in EXEC stage. There are some extra stalls due to lw instructions and RAW hazards.

2. The second instance also suffers the same number of stalls as the first one (except those caused
by lw instruction), but the benefit is that due to the mispredictions for these two instances, the
predictor for the corresponding program counter has moved to the branch taken state.

3. For all instances, starting from the third upto the penultimate one, the branch predictor correctly
predicts the state of the branch as well as the target jump address. All this is achieved within a
minimal delay of 1 cycle even when the true calculation is happening much later. Thus, prediction
and speculative execution provides a huge improvement, since otherwise the branch instruction
would have faced many stalls due to its dependency on the previous instruction.

4. The last “loop breaking” instance will again face 4 stalls due to misprediction since the predictor
was expecting the loop to continue just like for the previous instance. Note that all invalid
instructions that were a part of the speculation are safely cleared.

9

Ex 3: Demonstrating the scheme for load and store operations (1)

Figure 5: Uncomputed target address of sw stalls all future memory instructions

In figure 5, we see that a store instruction with an uncomputed memory address stalls all further
load-store operations:

1. Here we see that the the sw instruction (third) is stalled as register 2 is busy due to former add
instruction.

2. The important thing to realize here is that since at this point the address to be used by sw is
non deterministic, we can’t handle future load/store instructions because they might also use
the same memory address and hence use the wrong value.

3. Therefore the lw instruction in this example has to stall until the memory address of sw has not
been calculated and only then we check if it is possible to be sent to MEM unit or not.

Ex 4: Demonstrating the scheme for load and store operations (2)

Figure 6: Example 4

In figure 6, we can see a store instruction with uncomputed source register (but computed memory
address) only blocks instructions which have the same target memory address:

1. The mult instruction’s destination register is 5 which is the source register in sw instruction. So
sw instruction has to wait till mult graduates.

2. On the other hand, the memory address to which sw writes can be calculated irrespective of the
mult instruction.

3. So now effectively there are two cases, either the sw, lw instructions use the same memory address
(the former case) or they use different memory addresses (the latter case). If lw and sw have
same address then the latter lw has to be stalled until the sw instruction has been completed.
Otherwise we can send the lw instruction to memory unit which can be seen from the output.

10

Ex 5: Demonstrating handling of WAR hazards

Figure 7: WAR hazards are easily solved by register renaming and remapping

In figure 7, we can see that instruction 8 has a WAR dependency on instruction 7 i.e. while instruction
7 waits for register 4 so that it can be read from, instruction 8 tries to write the result of addition to
register 4.

1. Notice that instruction 8 doesn’t wait for instruction 7 to complete — it writes to a differ-
ent physical register instead. The logical-to-physical mapping is updated and used for future
instructions.

2. Notice an extra stall after RF1 stage in instruction 9 (as well as in earlier lw instructions). This
arises due to inavailability of ALU3 (which is used for calculating target addresses for memory
instructions).

7 Results

Shown below is a sample run of SPSIM for a program having nested for loops along with other
memory/integer operations. The space-time diagram and final states of registers and memory are also
shown (see figure 8).

7.1 Input program

data :
1 1
2 3

main :
lw 1 1 0
lw 2 1 0
lw 5 2 0
lw 3 0 0
lw 4 1 0
lw 1 1 0
add 3 3 4
add 1 1 4
bne 1 5 −3
add 2 2 4
bne 2 5 −6
sw 3 6 0

11

7.2 Output

Figure 8: Output of sample run

8 Contributions

All group members have thorough knowledge on the working of the simulator. All polices were dis-
cussed in the group before being implemented. Contributions mentioned below only highlight the
work put by members in coding up things. We have maintained a GitHub repository for this project
(https://github.com/ys1998/spsim). For further details on each member’s work, you may look at
the Contributors tab or the commit history. Note that contributions to a particular topic also include
the painful testing process for making the code bug-free.

Yash Shah, 160050002

• Modularized the code and introduced clocked and static entities and pointer-based connections
based on the initial draft prepared by Utkarsh.

• Collaborated with Rupesh to introduce branch prediction and branch instructions into the ISA.

• Worked on state restoration and flushing of invalid instructions in case of incorrect speculation
for integer and lw operations.

• Handled the output and pretty-printing of space-time diagram and the final state of registers
and memory.

12

Naman Jain, 160050025

• Worked on adding the load and store instructions to pipeline

Utkarsh Gupta, 160050032

• Implemented the first working superscalar simulator from scratch which had a fully pipelined
execution model for unicycle integer instructions.

• The implementation didn’t have branch prediction and support for load/store instruction; that
was augmented later on by other members.

• Setup the most basic integer ISA, input output format, and the pipelining structure so that the
code was easily extendable.

Rupesh, 160050042

• Collaborated with Yash to introduce branch prediction and branch instructions into the ISA.

• Worked on state restoration and flushing of invalid instructions in case of incorrect speculation
for integer, lw and sw operations.

Sharvik Mital, 160050059

• Worked on adding the load and store instructions to pipeline

References

[1] Kenneth C. Yeager. The mips R10000 superscalar microprocessor. IEEE Micro, 16(2):28–41, 1996.

[2] Milos Pruvolic. Tomasulo algorithm. Lecture Notes.

[3] Milos Pruvolic and Catherine Gamboa. High performance computer architecture. Video Lectures.

[4] Onur Mutlu. Computer architecture. Video Lectures.

[5] Susan Eggers. Out-of-order execution & tomasulo algorithm. Lecture Notes.

[6] Nima Honarmand. Memory accesses in out of order execution. Lecture Notes.

13

	Problem Statement
	Possible Directions

	Superscalar Processing
	Challenges in Superscalar Processing

	Resolving Hazards
	Resolving WAR/WAW hazards
	Resolving RAW hazards

	Branch Prediction
	Implementation Details
	Simplifying assumptions
	Challenges overcome
	Pipelining in SPSIM
	SPSIM Logical View

	Examples
	Results
	Input program
	Output

	Contributions

